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1. INTRODUCTION

West Nile virus (WNV) is a mosquito-borne fla-
vivirus and human, equine, and bird pathogen. It
is believed that birds are the natural reservoir,
and humans, equines and probably other verte-
brates are circunstantial hosts; that is, they can
be infected by an infectious mosquito but they
do not transmit the infection. Then, WN virus is
maintained in nature in a mosquito-bird-mosquito
transmission cycle (Lanciotti et al., 1999; Kramer
and Bernard, 2001; Campbell et al., 2002). The
primary vectors of WNV are Culex spp. mos-
quitoes (Campbell et al., 2002), although the virus
has been isolated from at least 29 more species
of ten genera. The virus can also be passed via
vertical transmission between a mosquito and her
offspring (Baqar et al., 1993; Swayne et al., 2000),
and that increases the survival of WNV in nature.
It has been found (Komar et al., 2003) that cer-
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tain bird species may become infectious by WNV
after ingesting it in an infected dead animal and
infected mosquitoes, both natural food items of
some species .

Most WN viral infections are subclinical but clin-
ical infections can range in severity from uncom-
plicated WN fever to fatal meningoencephalitis
(Campbell et al., 2002). The virus has been iso-
lated in humans, some other mammals, birds and
mosquitoes (Montan̄o, 2002)in countries of Africa,
Asia and Europe. WNV was detected for the
first time in North America in 1999, during an
outbreak in New York City (CDC, 1999). Since
then it has been spread rapidily to most of United
States (CDC, 2001). In this country between 1999
and 2001, WNV was associated with 149 cases
of neurological diseases in humans, 814 cases of
equine encephalitis and 11,932 deaths in the bird
population. During 2003, 9858 human cases and
14 deaths were reported (CDC, 2004).



In Mexico WNV activity is rather mild (Blitvich
et al, 2003) compared with United States. Some
studies (Tesh et al., 2002) point to the hypothesis
that the presence in the region of other arbovirus
infections as Dengue and Saint Louis Encephalitis
can cause cross immunization to WNV.

In this paper a model is presented to explore
the temporal mosquito-bird cycle transmission of
the WNV. It consists of the interactions among
susceptible and infective individuals of the two
species assuming that the transmission of the dis-
ease is only by mosquito bites and vertical trans-
mission in the mosquito population. Birds that
arrive to the community by birth or migration are
all susceptible.

2. FORMULATION OF THE MODEL

Let N̄a and N̄v be the bird and mosquito popu-
lation sizes, respectively. It is assumed that the
mosquito population has constant size with birth
and death rate constant equal to µv. For the bird
population it is assumed a constant recruitment
rate Λa due to births and immigrations; total
deaths occur at a rate µaN̄a where µa is the per
capita mortality rates of birds. Thus, the differ-
ential equation that governs the disease free bird
population dynamics is

N̄ Ia = Λa − µaN̄a.
The solutions N̄a of this equation approach the
equilibrium Λa/µa as t→∞.
Let S̄a(t), Īa(t), and R̄a(t) the number of suscep-
tibles, infectives and recovered in the bird pop-
ulation; and S̄v, Īv the number of susceptibles
and infectives in the mosquito population. Due to
its short life, a mosquito never recovers from the
infection (Gubler, 1986), and the recovered class
is not considered in this population.

The infection rates for each species depend on
the biting rate of mosquitos, the transmission
probabilities, as well as the number of infectives
and susceptibles of each species. The biting rate b
of mosquitoes is the average number of bites per
mosquito per day. The transmission probability is
the probability that an infectious bite produces
a new case in a susceptible member of the other
species.

The probability that a mosquito chooses a par-
ticular bird as a host is given by N̄v/N̄a. Thus a
bird receives in average b(N̄v/N̄a) bites per unit
of time. Then, the infection rates per susceptible
bird and susceptible mosquito are given by

βab
N̄v
N̄a

Īv
N̄v

=
βab

N̄a
Īv and βvb

Īa
N̄a
.

The infected birds recover at a constant rate γa,
and αa denotes the specific death rate associated

with WNV in the bird population. Then, the
adjusted infectious period taking into account
mortality rates is given by 1/(γa+µa+αa). In this
paper it is assumed αa ≤ γa, which is consistent
with the observations as it can be seen in Table 1
of section 5, where γ = 1/d.

As was mentioned in the Introduction, some
species of mosquitoes can transmit WN virus ver-
tically. Here, it is assumed that a fraction 0 ≤
p ≤ 1 of the progeny of infectious mosquitos is
infectious.

Combining the elements above, the following sys-
tem of differential equations is obtained:

S̄Ia =Λa −
bβa
N̄a
ĪvS̄a − µaS̄a

Ī Ia =
bβa
N̄a
ĪvS̄a − (γa + µa + αa)Īa

R̄Ia = γaĪa − µaR̄a
S̄Iv = µvS̄v + (1− p)µv Īv −

bβv
N̄a
ĪaS̄v − µvS̄v

Ī Iv = pµv Īv +
bβv
N̄a
ĪaS̄v − µv Īv

N̄ Ia =Λa − µaN̄a − αaĪa (1)

with the conditions S̄a + Īa + R̄a = N̄a and S̄v +
Īv = N̄v.

The first orthant in the S̄aĪaR̄aS̄v ĪvN̄a space
is positively invariant for system (1), since the
vector field on the boundary does not point to the

exterior. Furthermore, since N̄ Ia < 0 for N̄a >
Λa
µa

and N̄v is constant, all trajectories in the first
orthant enter or stay inside the region

T+ = {S̄a + Īa + R̄a = N̄a ≤ Λa
µa
, S̄v + Īv = N̄v}.

The right-hand side of (1) is Lipschitz continous
which implies that unique solutions exist on a
maximal interval. Since solutions approach, enter
or stay in T+, they are eventually bounded and
hence exist for t > 0 (Coddington and Levin-
son, 1955). Therefore, the initial value problem
for system (1) is mathematically well posed and
biologically reasonable since all variables remain
nonnegative.

In order to reduce the number of parameters and
simplify (1), the bird and mosquito populations

are normalized: Sa =
S̄a
Λ/µa

, Ia =
Īa
Λ/µa

, Ra =

R̄a
Λ/µa

, Na =
N̄a
Λ/µa

, Sv =
S̄v
N̄v
, Iv =

Īv
N̄v
. Since

Ra = Na − Sa − Ia and Sv = 1 − Iv, system (1)
is equivalent to the four dimensional non-linear
system of ODEs for the proportions:

SIa = µa −
bβam

Na
IvSa − µaSa



I Ia =
bβam

Na
IvSa − (γa + µa + αa)Ia

I Iv =
bβv
Na
Ia(1− Iv)− (1− p)µvIv (2)

N Ia = µa − µaNa − αaIa
in the subset of R4 given by

Ω = {0 ≤ Sa, 0 ≤ Ia, Sa+Ia ≤ Na ≤ 1, 0 ≤ Iv ≤ 1}.

Here m =
N̄v

Λa/µa
is the ratio between the mos-

quito and bird populations.

3. STEADY STATES OF THE MODEL

Suppose first 0 ≤ p < 1. In this case the steady
states of equation (2) satisfy the following rela-
tions

Ŝa =
µaN̂a

bβamÎv + µaN̂a

Îa =
µa(1− N̂a)

αa
(3)

Îv =
bβv Îa

bβv Îa + (1− p)µvN̂a
.

Substituting (3) in the corresponding equilibrium
second equation of (2) it can be seen that N̂a is a
solution of the following equation

(1−Na) r(Na) = 0 (4)

where r(Na) = AN
2
a + BNa + C is a polynomial

of second degree with coefficients

A= µabβv − αa(1− p)µv,
B = (1− p)µv(γa + µa + αa)R0 − µabβv,
C =−(γa + µa)(1− p)µvR0,

and

R0 =
mb2βaβv

(1− p)µv(γa + µa + αa)
. (5)

The solution N̂a = 1 gives the disease free equilib-
rium point P0 whose coordinates are Ŝa = 1, Îa =
0, Îv = 0, and N̂a = 1.

The nontrivial equilibrium solutions in the interior
of Ω satisfy 0 < Îa < N̂a < 1. From the
second equation of (3) it can be seen that this

implies
µa

µa + αa
< N̂a < 1, therefore it is enough

to restrict the searching to that interval. It is

straightforward to confirm that r(
µa

µa + αa
) < 0

and
r(1) = (1− p)µv(R0 − 1).

When R0 = 1, Na = 1 is a root of of r(Na),
and it can be seen that the other root is bigger

than one. If R0 < 1, the value of the polynomial
r(Na) is negative at the endpoints of the interval.
In this case, either there are two, one or none roots
in such interval. The conditions for having one or

two roots are a) A < 0; b)
µa

µa + αa
< − B

2A
< 1;

c) B2 − 4AC ≥ 0.
In this case b) and c) are not compatible, and
therefore there are no roots in the mentioned
interval.

If R0 > 1 then r(1) > 0, therefore there exists

a unique root in the interval (
µa

µa + αa
, 1) which

implies the existence of a unique equilibrium point
P1 = (Ŝa, Îa, Îv, N̂v) in the interior of Ω. P0 is
the disease-free equilibrium, and P1 corresponds
to the endemic value. Thus, it was proved that for
R0 ≤ 1, P0 is the only equilibrium point in Ω, but
in the case R0 > 1 the endemic equlibrium P1 will
also lie in Ω.

The quantity R̃0 =
√
R0 is called the Basic Re-

poductive Number of the disease, and it represents
the average number of secondary cases that one
infectious can produce if introduced into a sus-
ceptible population. This can be seen as follows:
an infective bird introduced into the suceptible
population is biten during his infective period
by mb/(γa + µa + αa) mosquitoes; a proportion
mβvb/(γa+µa+αa) of these mosquitoes becomes
infectious. Similarly, an infective mosquito distrib-
utes b/(1−p)µv bites in the bird population during
the rest of its life and a proportion βab/(1− p)µv
of these bites becomes new infections. Therefore,
the geometric mean of these quantities, R̃0, gives
the number of secondary infections.

In the case p = 1 the equilibrium points of (2) are
P0 and the solution of the equations:

Ŝa =
µaN̄a

mbβaNv + µaN̄a

Îa =
µa(1− N̄a)

αa

Îv = 1 (6)

where N̂a is a root of the equation

q(Na) = µaN
2
a + (mbβa − µa)Na − (7)

mbβa
γa + µa

γa + µa + αa
= 0

in the interval

w
µa

αa + µa
, 1

W
. Evaluating q(Na) at

the endpoints,

q(
µa

αa + µa
)< 0

q(1) =mbβa
αa

γa + µa + αa
> 0,



then (7) always has a unique root N̂a. Therefore,
the endemic equilibrium state P1 is in Ω inde-
pendently of the values of the parameters. Notice
that, as p→ 1, R0 →∞.

4. STABILITY ANALYSIS

In this section the stability of the steady states
of system (2) is investigated. Consider first the
case 0 ≤ p < 1. The Jacobian DF(P0) of Eq. (2)
evaluated in the disease-free equilibrium is given
by⎛⎜⎜⎝
−µa 0 −mbβa 0
0 −(γa + µa + αa) mbβa 0
0 bβv −(1− p)µv 0
0 −αa 0 −µa

⎞⎟⎟⎠ . (8)
The eigenvalues of (8) are −µa of multiplicity two,
and the roots of the polynomial λ2 + (γa + µa +
αa + (1 − p)µv)λ + (γa + µa + αa)(1 − p)µv(1 −
R0). The roots of a polynomial of order two have
negative real parts if and only if its coefficients are
positive. In this case, both coefficients are positive
if and only if R0 < 1. Therefore, the disease-free
equilibrium P0 is locally asymptotically stable for
R0 < 1, and unstable for R0 > 1.

When αa = 0, global stability of P0 for R0 ≤ 1
can be proved. In this case Na(t)→ 1, and system
(2) becomes

SIa = µa −mbβaIvSa − µaSa
I Ia =mbβaIvSa − (γa + µa)Ia
I Iv = bβvIa(1− Iv)− (1− p)µvIv. (9)

Defining the following Lyapunov function in Ω

L = Ia +
bβa

(1− p)µv Iv, (10)

the orbital derivative of L is given by

L̇=−mbβa(1− Sa)Iv − (11)

(γa + µa)(1−R0(1− Iv))Ia.
which is less or equal to zero for R0 ≤ 1. The
maximal invariant subset contained in L̇ = 0
consists of the Sa-axis. In this set system (9)
reduces to SIa = µa − µaSa, I Ia = 0, I Iv = 0. From
these equations it can be seen that Sa(t) → 1,
Ia(t) = 0, Iv(t) = 0 for t > 0. Therefore,
from LaSalle -Lyapunov theorem (Hale, 1969) it
follows thatP0 is locally stable and all trajectories
starting in Ω approach P0 for R0 ≤ 1. Thus, the
global asymptotical stability of P0 for R0 ≤ 1 and
αa = 0 has been established.

When R0 > 1, P0 becomes an unstable equi-
librium point, and the endemic equilibrium P1

emerges in Ω. The local stability of this point
is governed by the Jacobian DF(P1). From the
equations of system (2) in equilibrium the follow-
ing relations are obtained

mbβaÎv

N̂a
+ µa =

µa

Ŝa
,

γa + µa + αa =
mbβaÎvSa

ÎaN̂a
,

bβv Îa

N̂a
+ (1− p)µv = bβv Îa

ÎvN̂a
,

µa = µaN̂a + αaÎa, (12)

and DF (P1) can be written as the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−µa
Ŝa

0 −mbβaŜa
N̂a

mbβaÎvŜa

N̂2
a

mbβaÎv

N̂a
−mbβaÎvŜa

ÎaN̂a

mbβaŜa

N̂a
−mbβaÎvŜa

N̂2
a

0
bβv(1− Îv)

N̂a
−bβv ÎaNv

ÎvN̂a
−bβv Îa(1− Îv)

N̂2
a

0 −αa 0 −µa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

whose eigenvalues are −µa and the roots of the
polynomial λ3 + Pλ2 +Qλ+R, where

P =
µa

Ŝa
+
mbβaÎvŜa

ÎaN̂a
+
bβv Îa

ÎvN̂a
(13)

Q=
µabβv Îa

ŜaÎvN̂a
+
mb2βaβvŜaÎv

N̂2
a

+

mbβaÎv(µaN̂a − αaÎaŜa)
ÎaN̂2

a

R=
µamb

2βaβv((N̂a − Ŝa) + ŜaÎv)
N̂3
a

−

αamb
2βaβvŜaÎa

N̂3
a

.

By the Routh-Hurwitz criterion, it follows that all
roots of the above polynomial have negative real
parts if and only if P > 0, Q > 0, and PQ > R. It
is clear that P > 0. From the inequalities Ŝa < N̂a
and αaÎa < µa, Q > 0. Now, using the relation

N̂a − Ŝa = Îa + R̂a = (γa + µa)

µa
Îa,

R=
mb2βaβv Îa((γa + µa)− αaŜa)

N̂3
a

+

µamb
2βaβvŜaÎv

N̂3
a

.

Since Ŝa < 1 and αa ≤ γa + µa then R > 0.
Finally, the inequality PQ > R can be proved
easily. Thus, it has been proved that P1 is locally
asymptotically stable.

Now, the stability of the equilibria in case p =
1 is analyzed. The eigenvalues of the Jacobian



around the disease-free equilibrium P0 are −µa
of multiplicty two, and the roots of the equation

λ2 + (γa + µa + αa)λ−mb2βaβv = 0.
Since the last coefficient of this equation is nega-
tive, P0 is always unstable. On the other hand, for
the endemic equilibrium P1, the eigenvalues are

−µa, −bβv Îa
N̂a

, and the roots of the polynomial

λ2 + (
mbβa

N̂a
+ γa + 2µa + αa)λ + (γa + µa +

αa)(
mbβa

N̂a
+µa)+αa

mbβaŜa

N̂2
a

, which have negative

real part. Therefore P1 is locally asymptotically
stable.

The above results can be summarized in the
following theorem.

Theorem 1. If 0 ≤ p < 1, then the disease-free
equilibrium P0 is locally asymptotically stable for
R0 < 1. When R0 > 1, P0 becomes unstable, and
the endemic equilibrium P1 is locally asymptoti-
cally stable. If p = 1, P0 is always unstable, and
P1 is locally asymptotically stable.

5. NUMERICAL RESULTS

To evaluate the transmission dynamics, Komer et
al. (2003) exposed 25 bird species to WNV by
infectious bite of Culex tritaeniorhynchus. They
analyzed viremia data to determine values for
susceptibility (s), mean daily infectiousness (i),
duration of infectious viremia (d), and competence
index cj = s × i × d, for each species, where
susceptibility is the proportion of the birds that
become infected as a result of the exposure; mean
daily infectiousness is the proportion of exposed
mosquitoes that become infectious per day, and
duration of infectious viremia is the number of
days that birds maintain an infectious viremia.
The competence index is calculated as a function
of the viremia that the bird species develops after
mosquito-borne infection and it is a measure of
the species efficiency as a transmissor. Table 1
shows for eight species the values of s, i, d and
cj obtained in (Komar et al, 2003). In the context

of our model s = βa, i = βv, d =
1

γ
and cj =

βaβv
γ
. The same authors estimated the proportion

of fatal infections of birds exposed to WNV by
mosquito bites and the mean number of days to
death. From these data the daily disease mortality
rate αa was calculated as the proportion of deaths
divided by the mean number of days to death.

The lifespan of birds is difficult to estimate. Values
reported range from three to ten years. Here, it
is assumed an average lifespan of 6 years for all

Table 1. Competence index and R̃0

Name s i d αa cj R̃0
Blue Jay 1 .68 3.75 .15 2.55 2.62
Common 1 .68 3 .07 2.04 2.66

Gackle
House Finch 1 .32 5.5 .14 1.76 2.04
American Crow 1 .5 3.25 .19 1.62 2.04
House Sparrow 1 .53 3 .1 1.59 2.26
Ring-billed 1 .28 4.5 .1 1.26 1.9
Gull
Black-billed 1 .36 3 .16 1.08 1.74
Magpie
Fish Crow 1 .26 2.8 .06 0.73 1.60

species which gives a mean value µa = .0004.
Since the time course of the infection is of a few
days, the effect of this approximation on R0 is
negligible. Typical values of the biting rate b are
once every two or three days, here b = 0.5. The
reported values (Gubler, 1986) for the lifespan
of mosquitoes vary from weeks to months. An
average value is two or three weeks for females
(Gubler, 1986) which gives µv = 0.06.

Using the values of the parameters above and the
ones in Table 1, R̃0 was estimated for each bird
species. It is assumed in all of the cases, that the

ratio m =
Nv

Λa/µa
= 1, and that the probability of

vertical transmission p = 0.

According to Table 1, American Crow and House
Finch are more competent than House Sparrow,
however the number of secondary infections pro-
duced by individuals of those species is less than
the corresponding number produced by House
Sparrow birds. The same phenomenum is observed
between Blue Jay and Common Grackle.

Notice that disease mortality rates of American
Crow, House Finch and Blue Jay are significa-
tively greater than the corresponding ones for
House Sparrow, and Common Grackle. The role
of disease related mortality in the dynamics of
the disease is reflected in R̃0 but not in the
competence index cj . The disease-related death
rate αa reduces the average infectious period, and
consequently the number of infection transmis-
sions per infective. Thus, high disease mortality
is likely to diminish the efficiency of a species as
a transmissor. This suggests that R̃0 is a better
measure of the epidemiological importance of a
given species.

Figure 1 illustrates the time course of the infected
bird proportion for Blue Jay, American Crow



and House Sparrow. In this figure only the first
epidemic peak is presented.

Fig. 1. Temporal course of the proportion of
infectious birds.

6. CONCLUSIONS

The dramatic appearance of the epidemic of WNV
in the northeast part of United States, is a re-
minder of the ability of virus to jump continents.
The subsequent spread of WNV shows that ar-
boviral virus that are introduced to new areas
can become established if efficient mosquitoes and
hosts are available. A condition for the mainte-
nance of the disease when the virus is introduced
in a certain region were obtained, finding that

R̃0 =
0
R0 =

�
mb2βaβv

(γa + µa + αa)(1− p)µv
is the basic reproductive number for this disease.
Then, if R̃0 is less than one the disease will fade
out since an infective will replace itself with less
than one new infective. On the other hand, if R̃0
is grater than one, the infected fraction of the
mosquito and bird populations will tend to an
endemic steady state.

R0 is linear with respect the ratio, m, between
mosquito and bird population. Then, disease
spread is likely to be greater when birds migrates
to regions with high density of mosquitos. Ver-
tical transmission in the mosquito population is
also a risk factor for WVN. The model predicts
that if the probability of vertical transmission is
sufficiently high, the disease can be maintained
all of the time, even in regions with scarce bird
population.

The effect of the disease on the population dynam-
ics of bird population is simple and direct. When
the disease remains endemic, the disease-related
deaths decrease the population size. Low values
of αa would have a small effect in the population
size. Since R0 decreases when αa increases, high
values of αa will cause the disease to die out, and
eventually the population size will return to its
original values. Intermediate values of αa are the
ones than can cause more damage to the popula-
tion.
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