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Multi-species interactions in West Nile virus infection

Gustavo Cruz-Pachecoa, Lourdes Estevab* and Cristobal Vargasc

aIIMAS, UNAM, México, D.F. 04510, México; bDepartamento de Matemáticas, Facultad de Ciencias,
UNAM, México, D.F. 04510, México; cDepartamento de Control Automático, CINVESTAV–IPN,

A.P. 14-740, México, D.F. 07000, México

(Received 3 December 2009; final version received 8 March 2011 )

In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of
West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds
and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean
of the basic reproductive number of each species, weighted by the relative abundance of its population
in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in
Mexico.

Keywords: West Nile virus; multiple species; endemic equilibrium; basic reproduction number

1. Introduction

West Nile virus (WNV) is an arbovirus disease transmitted by the bite of mosquitoes to different
species of birds and mammals, including humans. Infected mammals cannot transmit the disease;
therefore, the disease cycles only between birds and mosquitoes [4].

The disease has been observed in Africa, Europe, and the Middle East for several decades. It
was first detected in the Western Hemisphere in 1999 during an outbreak in NewYork. Since then,
it has spread to most of the USA. The impact of WNV has been much greater in North America
than in the Eastern Hemisphere. More than 2500 cases of WNV fever are reported each year in
the USA, and many mild cases are probably not diagnosed [34]. In Canada, outbreaks of WNV
has been reported in Alberta, Quebec, Ontario, Manitoba, and Saskatchewan [14].

The virus was first detected in 2001 in Jamaica and the Cayman Islands where 17 WNV
seropositive birds were reported in a sample of 348. In 2002, WNV continued to spread in
the Caribbean Basin. Guadeloupe Island reported numerous subclinical infections in horses and
chickens, determined serologically by neutralization; however, subsequent surveillance in 2003
and 2004 failed to detect any transmission in this region. In 2002, seropositive horses were
reported from six states (Chihuahua, Coahuila, Tamaulipas, Veracruz, Tabasco, and Yucatán) of
México [11,22]. In the same country, seropositive birds were rare and were first detected in the early
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winter months of 2003 [12,33]. The widespread WNV seropositivity among horses observed in
Mexico in 2003 was also present in El Salvador and Guatemala [6]. However, anecdotal reports of
fatal or life-threatening neurological disease in Mexican and Central American horses have rarely
been confirmed as being due to WNV. In 2004, the first serological evidence of WNV activity in
South American ecosystems was found in Colombia, where WNV neutralizing antibodies were
found circulating in domestic animals [25]. All these data indicate the presence of WNV in Latin
America and the Caribbean since at least 2001, but the incidence has remain very low and no
outbreaks have been reported.

Taking into account the ecological conditions of LatinAmerica and the Caribbean Islands which
favour some arbovirus transmissions such as dengue, the low incidence of WNV activity reported
in these regions is surprising [14]. Several explanations have been given for this fact, all of them
related to the virus. One hypothesis is that the wide circulation of other flavivirus (like dengue)
in Latin America and the Caribbean have created cross-immunization against WNV. Another
hypothesis is that the virus has mutated into a more benign strain in its way down south [14].

The role of different mosquitoes and birds species in the spread of WNV is an important problem
that has been studied, for example, in [1,14–16,31]. Laboratory and field studies show that some
species are more competent at transmitting the disease [1,14–16,26,31,32]. These studies found
that transmission efficiency, species abundance, and biting behaviour of mosquitoes are among
the most important parameters for the risk of an outbreak. For instance, in [32], it was concluded
that although Culex pipiens is only a moderately competent laboratory vector, it is a very efficient
enzootic vector in regions where it is abundant, because it feeds primarily on avian hosts. In the
same paper, it was suggested that since Aedes albopictus feeds on a variety of hosts, it could be
a bridge vector between the enzootic avian cycle and mammals. All of these studies suggest that
the development of outbreaks in a particular location depends strongly on the epidemiological
characteristics and on the abundance of the local bird and mosquito species of the region. In
particular, we hypothesize that a possible explanation for the absence of outbreaks of WNV in
some countries such as Mexico is the lack of sufficiently large populations of good transmitters
(birds or vectors) of the disease.

Several mathematical models have been developed explaining a variety of features on the trans-
mission of WNV disease. In [36], the authors used a core model that summarized the biological
assumptions common to several of these models to compare the different R0 obtained for each
model. Some of the cited models include the exposed class in the vector population to account for
the viral incubation time in the mosquitoes [21,35]. Others assume vertical transmission in the
vector population [7,30]. Some models incorporate the aquatic life stage of the mosquitoes (eggs,
larval and pupal stages) [35]. For the avian population, most of the models include a recovered
class [2,7,21,30,35]. Spatial diffusion of WNV is modelled in [19,20,23,24], and seasonal effects
on new outbreaks starting from an endemic situation are studied in [8]. Most of the above models
deal with only one species of birds and one species of mosquitoes, although in [3] the authors
divide the susceptible birds into two groups: the crow family birds and the remaining birds under
consideration to show that the non-crow family birds susceptible to WNV are one of the key
factors responsible for the endemicity of the virus in the region of study.

In this work, we consider that epidemiological heterogeneity is an important factor in the
transmission of WNV, and therefore we formulate a mathematical model to study the effect of
the interaction between different species of birds and mosquitoes living in the same locality on
the emergence and prevalence of the disease. Our model is based on [7]. The exposed class is
not considered as in [21,35], since this class just introduces a time delay in the outbreak. Neither
the initial stages of the vector are considered as in [35], since our interest is the dynamics of
vector–host interactions, and not the control of the vector.

We find an expression for the basic reproductive number which reflects the relative importance of
each of the species in the emergence of epidemics and endemicity of the disease. This expression
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indicates that the abundance of a competent species leads to the possibility of an outbreak in
species which are not good transmitters by themselves. We illustrate this behaviour using data
from birds and mosquito species with different transmission competence and population sizes.

This paper is structured as follows: in Section 2, we formulate and analyse a model for the
transmission of WNV considering that there are several species of birds and only one species of
mosquitoes. Further, we make a sensitivity analysis and numerical simulations of the model. In
Section 3, we treat the problem of several kinds of mosquitoes and only one species of birds. The
general model considering several species of birds and mosquitoes is formulated in Section 4, and
we obtain an estimation of the basic reproduction number for some numerical examples. Finally,
in Section 5, we present our conclusions.

2. N species of birds

2.1. Formulation of the model

The following system of nonlinear differential equations was proposed in [7] to explore the
temporal mosquito–bird cycle transmission of WNV.

dSa

dt
= �a − bβa

Na
IvSa − μaSa

dIa

dt
= bβa

Na
IvSa − (γa + μa + αa)Ia

dRa

dt
= γaIa − μaRa

dSv

dt
= μvSv + (1 − p)μvIv − bβv

Na
IaSv − μvSv

dIv

dt
= pμvIv + bβv

Na
IaSv − μvIv

dNa

dt
= �a − μaNa − αaIa, (1)

where Sa, Ia, and Ra denote the susceptibles, infectives, and recovered of the bird population with
Na = Sa + Ia + Ra the total bird population, and Sv, Iv denote the susceptibles and infectives of
the vector population with Nv = Sv + Iv the total mosquito population.

The parameters of the model are the recruitment rate �a, the natural mortality rate μa of the
bird population, the mortality rate of mosquitoes μv, the biting rate of mosquitoes b, βa, and
βv the transmission probabilities, γa the recovery rate, αa the disease-related death in the avian
population, and finally p the proportion of vertical transmission in mosquitoes.

Based on the above equations, we formulate a model to study the interaction of several avian
species with one species of mosquitoes. The population size of the ith bird species is denoted by
Ni, with Ni divided into epidemiological compartments: Si , Ii, and Ri .

The dynamics of the different species in the absence of the disease is given by

dNi

dt
= �i − μiNi, (2)

where �i is the recruitment rate and μi is the bird mortality rate of the ith species. We assume
zero vertical transmission for all species of birds. The vector population is constant with value
Nv and mortality rate μv.
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The model considers the interaction among susceptible and infective individuals of each of
the n species of birds with the mosquito population and assumes that the transmission of the
disease is only through mosquito bites. The infection rate for the ith bird species depends on the
mosquito biting rate, the transmission probabilities and on the number of infective and susceptible
individuals of each species.

The average number of vectors per bird is given by Nv/(N1 + · · · + Nn), a particular bird
receives on average, bNv/(N1 + · · · + Nn) bites per unit of time.

The transmission probability is the probability that an infectious bite produces a new case in a
susceptible member of the other species. For the ith bird species, βi and βvi

are the transmission
probabilities from mosquito to bird and bird to mosquito, respectively. Then, the infection rates
per susceptible bird of the ith bird species and susceptible vector are given by

bβi

N1 + · · · + Nn

Iv,
bβvi

N1 + · · · + Nn

Ii.

We assume that infected birds of the ith bird species recover at a constant rate γi, and we denote by
αi the corresponding specific death rate associated with WNV in the mentioned bird population.

Since Ri = Ni − Si − Ii , it is enough to consider the system in the variables Si, Ii, Ni, and
Iv. According to the assumptions above, we modify the basic system (1) to include several bird
species:

dSi

dt
= �i − bβi

N1 + · · · + Nn

SiIv − μiSi

dIi

dt
= bβi

N1 + · · · + Nn

SiIv − (γi + μi + αi)Ii (3)

dIv

dt
=

n∑
i=1

bβvi
Ii

N1 + · · · + Nn

(Nv − Iv) − μvIv

dNi

dt
= �i − μiNi − αiIi

with i = 1, . . . , n.
System (3) leaves invariant the first orthant in R3n+1 since the vector field on the boundary

points inward. Furthermore, since dNi/dt < 0 for Ni > �i/μi , i = 1, . . . , n, all trajectories in
the first orthant enter or stay inside the region

� =
{
Si + Ii ≤ Ni ≤ �i

μi

, i = 1, . . . , n, 0 ≤ Iv ≤ Nv

}
.

The continuity of the right-hand side of Equation (3) implies that given an initial condition in �, a
unique solution exists. Since the orbits approach, enter, or stay in �, they eventually are bounded
and hence exist for t > 0. Therefore, the initial value problem for system (3) is mathematically
well posed as biologically reasonable since all variables remain non-negative.

2.2. Disease-free equilibrium

We denote the disease-free equilibrium by E0, whose coordinates are Ni = Si = �i/μi ; Ii = 0;
i = 1, . . . , n, and Iv = 0. Using the next generation operator approach [9,10], we compute the
basic reproduction number R0 associated with the disease-free equilibrium. The non-negative
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matrix, K , of the infection terms, and the non-singular M-matrix, T , of the transition terms are
given by

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
bβ1N̄1

N̄

0 0 · · · 0
bβ2N̄2

N̄· · · · · · · · ·
· · · · · · bβnN̄n

N̄
bβv1Nv

N̄

bβv2Nv

N̄
· · · bβvn

Nv

N̄
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1 + μ1 + α1 0 · · 0
0 γ2 + μ2 + α2 · · 0
· · · · ·
· · · · ·
0 0 0 γn + μn + αn 0
0 · · 0 μv

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where N̄i = �i/μi , i = 1, . . . , n, and N̄ = ∑n
i=1 N̄i .

It is known that R0 = ρ(KT −1), where ρ denotes the spectral radius [9]. In the following
theorem, we find an expression for R0.

Theorem 1 The basic reproduction number associated with the disease-free equilibrium of
model (3) is given by

Ra
0 =

√∑n

i=1
(Ra

0i
)2

(
N̄i

N̄

)
, (4)

where

Ra
0i

=
√

b2βiβvi

μv(γi + μi + αi)

(
Nv

N̄

)
(5)

is the basic reproductive number corresponding to ith species, i = 1, . . . , n.

Proof KT −1 is a (n + 1) × (n + 1) matrix of the form

A =
(

0 ūT

v̄ 0

)
,

with

ū =
(

bβ1N̄1

μvN̄
, . . . ,

bβnN̄n

μvN̄

)
and v̄ =

(
bβv1Nv

(γ1 + μ1 + α1)N̄
, . . . ,

bβvn
Nv

(γn + μn + αn)N̄

)

n-dimensional row vectors and 0 is the n × n null matrix.
The matrix A has n − 1 eigenvectors associated with the eigenvalue zero of the form (w̄, 0),

where w̄ is an n-dimensional row vector such that v̄ · w̄ = 0. The other two eigenvectors are
(ū, ±√

ū · v̄) with eigenvalues ±√
ū · v̄. It is straightforward to see that

√
ū · v̄ = Ra

0 . �

Using Theorem 2 of [10], the following result is established.
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Theorem 2 The disease-free equilibrium, E0, of model (3) is locally asymptotically stable
if Ra

0 < 1 and unstable if Ra
0 > 1.

The above theorem shows that WNV infection disappears if the initial conditions of model
(3) are sufficiently close to the disease-free equilibrium. To ensure the elimination of the disease
regardless of the initial population sizes, a global stability result is needed. For the case when
the disease-related mortalities are zero, we prove that the disease-free equilibrium is globally
asymptotically stable. This is done below using a comparison theorem.

Theorem 3 Assume αi = 0, for i = 1, . . . , n. If Ra
0 < 1, the disease-free-equilibrium, E0,

of model (3) is globally asymptotically stable in the region �, whenever Ra
0 < 1.

Proof The conditions αi = 0 imply Ni → N̄i for i = 1, . . . , n. Therefore, the equations for Ii

and Iv in Equation (3) can be written as

dI1

dt
= bβ1

N̄
S1Iv − (γ1 + μ1)I1

...

dIn

dt
= bβn

N̄
SnIv − (γn + μn)In

dIv

dt
=

n∑
i=1

bβvi
Ii

N̄
(Nv − Iv) − μvIv. (6)

Since Si ≤ N̄i, the following vectorial inequality holds

d

dt

⎛
⎜⎜⎜⎝

I1(t)
...

In(t)

Iv(t)

⎞
⎟⎟⎟⎠ ≤ (K − T )

⎛
⎜⎜⎜⎝

I1(t)
...

In(t)

Iv(t)

⎞
⎟⎟⎟⎠ , (7)

where the matrices K and T are defined as above.
Now, consider the system in the variables Zi , i = 1, . . . , n, and Zv given by

d

dt

⎛
⎜⎜⎜⎝

Z1(t)
...

Zn(t)

Zv(t)

⎞
⎟⎟⎟⎠ = (K − T )

⎛
⎜⎜⎜⎝

Z1(t)
...

Zn(t)

Zv(t)

⎞
⎟⎟⎟⎠ . (8)

If Ra
0 < 1, then ρ(KT −1) < 1, which is equivalent to K − T has all of its eigenvalues in

the left half-plane [9]. It follows that the ODE linear system (8) is stable if Ra
0 < 1. Conse-

quently, (Z1(t), . . . , Zn(t), Zv(t)) → (0, . . . , 0, 0) as t → ∞. Then, from Equation (7), using a
standard comparison theorem [18, p. 31], (I1(t), . . . , In(t), Iv(t)) → (0, . . . , 0, 0). This in turn
implies that Si(t) → N̄i for i = 1, . . . , n; therefore, the disease-free equilibrium, E0, is globally
asymptotically stable in � whenever Ra

0 < 1. �
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2.3. Endemic equilibrium

An endemic equilibrium is given by the solution of the algebraic system obtained setting the
derivatives of Equation (3) equal to zero.

0 = �i − bβi

N∗
1 + · · · + N∗

n

S∗
i I ∗

v − μiS
∗
i

0 = bβi

N∗
1 + · · · + N∗

n

S∗
i I ∗

v − (γi + μi + αi)I
∗
i (9)

0 =
n∑

i=1

bβvi
I ∗
i

N∗
1 + · · · + N∗

n

(Nv − I ∗
v ) − μvI

∗
v

0 = �i − μiN
∗
i − αiI

∗
i

with i = 1, . . . , n.

Solving for I ∗
v and S∗

i in terms of N∗
i and I ∗

i , we obtain

I ∗
v =

∑n
j=1 bβvj

I ∗
j Nv∑n

j=1 bβvj
I ∗
j + μv

∑n
j=1 N∗

j

S∗
i = �i(

∑n
j=1 bβvj

I ∗
j + μv

∑n
j=1 N∗

j )
∑n

j=1 N∗
j

(bβiNv + μi)
∑n

j=1 bβvj
I ∗
j + μiμv(

∑n
j=1 N∗

j )2
(10)

with i = 1, . . . , n.
Let I = (I ∗

1 , . . . , I ∗
n ), N = (N∗

1 , . . . , N∗
n ), and a = (α1, . . . , αn).

Substituting I ∗
v and S∗

i in the equations for I ∗
i , we obtain that I and N are solutions of the

algebraic system

Fi(I, N; a) = 0,

Gi(I, N; a) = 0, (11)

where

Fi(I, N; a) = bβi�iNv
∑n

j=1 bβvj
I ∗
j

(bβiNv + μi)
∑n

j=1 bβvj
I ∗
j + μiμv(

∑n
j=1 N∗

j )2

− (αi + μi + γi)I
∗
i

Gi(I, N, a) = �i − μiN
∗
i − αiI

∗
i (12)

with a fixed and i = 1, . . . , n.
We first analyse the case a = 0. For this value of a, N∗

i becomes N̄i = �i/μi, i = 1, . . . , n,
and we denote by Īi the corresponding coordinates of the infective birds at equilibrium.

We define the new variable

Y =
n∑

j=1

bβvj
Īj . (13)

In terms of Y and N̄i, system (11) can be solved for Īi ,

Īi = bβi�iNvY

((bβiNv + μi)Y + μiμvN̄2)(μi + γi)
, (14)

with i = 1, . . . , n.
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Multiplying Īi by bβi , i = 1, . . . , n, and adding, the algebraic system (14) reduces to a single
equation for the variable Y ,

Y = Y

n∑
i=1

b2βiβvi
�iNv

((bβiNv + μi)Y + μiμvN̄2)(μi + γi)
. (15)

Eliminating the trivial solution Y = 0 (which corresponds to the disease-free equilibrium) and
substituting Ra

0i
given by Equation (5) in Equation (15), we get that the non-trivial solutions Y

satisfy the equation

H(Y) = 1, (16)

where

H(Y) =
n∑

i=1

μvμi(R
a
0i
)2N̄N̄i

(bβiNv + μi)Y + μiμvN̄2
. (17)

Since H(Y) decreases monotonically to zero when Y tends to infinity, and H(0) = (Ra
0 )2, it

follows that a necessary and sufficient condition for the existence of a unique root Y ∗ of Equation
(16) is Ra

0 > 1. Therefore, in the case a = 0, there exists a unique endemic equilibrium if and
only if Ra

0 > 1.
Now we proceed to analyse the case a �= 0 and a sufficiently small. From the implicit function

theorem, it follows that system (13) has a unique solution (I, N; a) for a in the neighbourhood of
0 if the Jacobian determinant

J = ∂(F1, . . . , Fn, G1, . . . , Gn)

∂(I1, . . . , In, N1, . . . , Nn)

evaluated at (I,N;0) is different from zero. This determinant can be simplified to obtain

J = (−1)n
n∏

i=1

μi

(
∂(F1, . . . , Fn)

∂(I1, . . . , In)

)
. (18)

We summarize the above results in the following theorem.

Theorem 4 Assume αi = 0 for all i, then system (3) has a unique endemic equilibrium if and
only if Ra

0 > 1. If the Jacobian given by Equation (18) is different from zero, the result can be
extended for a in the neighborhood of 0.

For two species of birds (n = 2), the Jacobian J has the form

−A

⎡
⎣(

μ1μvN̄1N̄Ra
01

(bβ1Nv + μ1)Y ∗ + μ1μvN̄2

)2

+
(

μ2μvN̄2N̄Ra
02

(bβ2Nv + μ2)Y ∗ + μ2μvN̄2

)2

− 1

⎤
⎦ ,

with A = μ1μ2(μ1 + γ1)(μ2 + γ2). Substituting H(Y ∗) = 1 in the last expression, J becomes

A

[
μ1μvN̄

2
1 (Ra

01
)2Y ∗(bβ1Nv + μ1)

(bβ1Nv + μ1)Y ∗ + μ1μvN̄2
+ μ2μvN̄

2
2 (Ra

02
)2Y ∗(bβ2Nv + μ2)

(bβ2Nv + μ2)Y ∗ + μ2μvN̄2

]
. (19)

Clearly, J �= 0, and therefore the following result has been proved.
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Corollary 1 Assume n = 2. For Ra
0 > 1, system (3) has a unique endemic equilibrium, for

(α1, α2) in the neighborhood of (0, 0).

The global stability of the endemic equilibrium in the interior of � can be proved in the case
αi = 0 for i = 1, . . . , n using the Lyapunov function

V (S1, . . . , Sn, I1, . . . , In, Sv, Iv) =
n∑

i=1

Ai

(
Si − S̄i − S̄i ln

Si

S̄i

)

+
n∑

i=1

Ai

(
Ii − Īi − Īi ln

Ii

Īi

)

+
(

Sv − S̄v − S̄v ln
Sv

S̄v

)

+
(

Iv − Īv − Īv ln
Iv

Īv

)
. (20)

with S̄v = Nv − Īv. The constants Ai , i = 1, . . . , n, are given by

Ai = βvi
S̄vĪi

βi S̄i Īv
. (21)

The orbital derivative of Equation (20) is given by

V̇ =
n∑

i=1

Ai

(
1 − S̄i

Si

) (
�i − bβi

N̄
SiIv − μiSi

)

+
n∑

i=1

Ai

(
1 − Īi

Ii

) (
bβi

N̄
SiIv − (γi + μi)Ii

)

+
(

1 − S̄v

Sv

) (
μvNv −

n∑
i=1

bβvi

N̄
SvIi − μvSv

)
(22)

+
(

1 − Īv

Iv

) (
n∑

i=1

bβvi

N̄
SvIi − μvIv

)
.

Substituting the following relations obtained from system (9) at equilibrium,

�i = bβi

N̄
S̄i Īv + μiS̄i,

γi + μi = bβi

N̄

S̄i Īv

Īi

,

μvNv =
n∑

i=1

bβvi

N̄
S̄vĪi + μvS̄v,

μv =
n∑

i=1

bβvi

N̄

S̄vĪi

Īi

,



290 G. Cruz-Pacheco et al.

and the expressions for Ai above, into the expression for the Lyapunov derivative in Equation
(21) and simplifying, we obtain

V̇ = −
n∑

i=1

μiAi

(Si − S̄i)
2

Si

− μv
(Sv − S̄v)

2

Sv

− 2
n∑

i=1

Ai

bβi

N̄
SiIv − 2

n∑
i=1

Ai

bβi

N̄

S̄i Īv

S̄vĪi

SvIi (23)

−
n∑

i=1

Ai

bβi

N̄
S̄i Īv

[
S̄i

Si

+ S̄v

Sv
+ Si ĪiIv

S̄iIi Īv
+ SvIi Īv

S̄vĪiIv
− 4

]
.

Let

xi1 = S̄i

Si

, xi2 = Sv

S̄v
, and xi3 = ĪiIv

Ii Īv
.

It follows that for i = 1, . . . , n, the expression inside the square parenthesis of the last term of
Equation (23) can be re-written as

fi(xi1 , xi2 , xi3) = xi1 + 1

xi2

+ xi3

xi1

+ xi2

xi3

− 4.

It is easy to see that the minimum of the functions fi in R
n+ is zero, and it is attained when

xii = xi2 = xi3 = 1 (i = 1, . . . , n). Hence, it follows that V̇ ≤ 0 and V̇ = 0 if and only if Si = S̄i ,
Ii = Īi , Sv = S̄v, and Iv = Īv. This implies that all trajectories in the interior of � approach the
endemic equilibrium as t → ∞, proving the global stability.

It is interesting to notice that Ra
0 given in Equation (5) is the average of the basic reproductive

numbers of the bird species weighted by their corresponding population proportion with respect to
the total number of birds. Then, the balance among the competence of the birds species to transmit
the disease and their corresponding population density will determine the evolution of the disease.
To illustrate this point, we consider two species of birds, Common Grackle and Northern Flicker,
whose epidemiological and demographic parameters are shown in Table 1. As can be appreciated,
the first species is more competent than the second one transmitting the disease, since for the
first species βv = 0.68 and for the second βv = 0.06. Moreover, the population sizes of two
species range from hundreds to thousands in the USA. For our example, we assume that the
Northern Flicker and Common Grackle populations are N1 = 1000 and N2 = 100, respectively.
We use the values in Table 1 for the bird populations and the values in Table 2 that correspond

Table 1. Epidemiological and demographic parameters in the numerical simulations of WN models.

Bird βv γa αa μa Sources

Common Grackle 0.68 0.33 0.07 0.0001 [16,29]
Northern Flicker 0.06 1.0 0.0 0.0003 [16,29]

Table 2. Epidemiological and demographic parameters in the numerical simu-
lations of WN models.

Vector b βa μv Sources

A. albopictus 0.1 0.86 0.07 [27,31,36]
C. pipiens 0.5 0.88 0.07 [31,36]
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Figure 1. Temporal course of the proportion of infected birds. For Northern Flicker R01 = 0.41 and N̄1 = 1000. For
Common Grackle, R02 = 2.2 and N̄2 = 100. In this case, R0 = 0.76.
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Figure 2. Temporal course of the proportion of infected birds. For Northern Flicker, R01 = 0.37 and N̄1 = 1000. For
Common Grackle, R02 = 1.95 and N̄2 = 400. In this case, R0 = 1.2.

to C. pipiens. We assume Nv = 1000, which is a very low estimate for the mosquito population.
The basic reproductive number for Northern Flicker is Ra

01
= 0.41, while for Common Grackle

it is Ra
02

= 2.2, which gives Ra
0 = 0.76. Figure 1 shows the temporal course of the infected

proportions of the two species for this case. We observe that the infected proportion of Common
Grackle decreases monotonically, in spite of being a very competitive species. Now, increasing
the population of Common Grackle to N2 = 400 gives Ra

01
= 0.37, Ra

02
= 1.95, and Ra

0 = 1.2.
Figure 2 shows that in this case there is an epidemic involving both populations, and the infected
proportion of Northern Flicker is slightly lower than the infected proportion of Common Grackle.
This shows that a highly competent species can start an outbreak even in an habitat shared with
other species less competent.
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2.4. Sensitivity analysis

We are interested in how the spread of the WNV infection is affected by (i) the susceptibility and
transmission rates of each bird species and (ii) the population size of birds and vector species.
A way to answer these questions is by calculating the derivative of the basic reproduction num-
ber, Ra

0 , with respect to the parameters. To answer (i), we observe from expression (5) that Ra
0

depends linearly on the transmission rates βi , βvi , and Nv. Then, increasing the susceptibility and
transmission rate of the ith bird species or increasing the vector population increases Ra

0 linearly.
To answer (ii), we calculate the derivative of Ra

0 with respect to Ni :

∂(Ra
0 )2

∂Ni

= 1

N
(−2(Ra

0 )2 + (Ra
0i
)2). (24)

We observe that the derivative of Ra
0 with respect to the population size of the ith bird species

depends on the ratio ρi = R0i
/R0, then R0 increases or decreases depending on whether ρi

is greater or less than
√

2. Returning to the example illustrated in Figure 1, Ra
01

= 0.41 and

Ra
0 = 0.76, which give ρ1 = 0.53 <

√
2. If we increment the population of Northern Flicker

to N1 = 2000, we obtain Ra
0 = 0.44 which is less than the previous value of Ra

0 . On the other
side, in the example of Figure 2, Ra

02
= 1.95, Ra

0 = 1.2, and ρ2 = 1.62 >
√

2 for a population of
Common Grackle N2 = 400. Now, if we increment N2 to 800, Ra

0 = 1.38 which is greater than
the previous value of Ra

0 . However, for N2 = 800, the basic reproductive number Ra
02

decreases

to 1.72, and ρ2 = 1.24 <
√

2. Therefore, Ra
0 decreases when N2 increases beyond 800. Indeed,

calculating the basic reproductive number when N2 = 1600, we obtain Ra
0 = 1.13. This effect is

due to the fact that increasing the bird population decreases Ra
0i

.

3. N species of vectors

In this section, we consider the relation between n species of mosquitoes and one species of
birds. For each vector species, we denote by Nvi

and μvi
the constant population size and per

capita mortality rate, respectively, i = 1, . . . , n. We assume also that there is just one species
of birds, and we denote by Na its total population size. The susceptible, infected, and removed
avian populations are denoted by Sa, Ia, and Ra, respectively, with Na = Sa + Ia + Ra. As in the
previous section, the bird population size changes according to the limited growth model:

dNa

dt
= �a − μaNa, (25)

where �a is the recruitment rate and μa is the bird mortality rate.
We denoted by bi the biting rate of mosquitos of species i. Assuming the probability that a given

bird will be bitten by a vector of species i given by Nvi
/(Nv1 + Nv2 + · · · + Nvn

), the transmission
rates from vectors of species i to birds become

Nvi

Nv1 + Nv2 + · · · + Nvn

biβai

Na
SaIvi

, (26)

i = 1, . . . , n. With this assumption, the model is given by

dSa

dt
= �a −

n∑
i=1

Nvi

Nv1 + Nv2 + · · · + Nvn

biβai

Na
SaIvi

− μaSa,

dIa

dt
=

n∑
i=1

Nvi

Nv1 + Nv2 + · · · + Nvn

biβai

Na
SaIvi

− (γa + μa + αa)Ia,
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dIvi

dt
= biβvi

Ia

Na
(Nvi

− Ivi
) − μvi

Ivi
, (27)

dNa

dt
= �a − μaNa − αaIa,

where i = 1, . . . , n.
Analogous to Section 2, it can be proved that the basic reproductive number Rv

0 associated with
the disease-free equilibrium Ev

0 is given by

Rv
0 =

√∑n

i=1
(Rv

0i
)

2 Nvi

Nv
, (28)

where

Rv
0i

=
√

b2
i βai

βvi

μvi
(γa + μa + αa)

Nvi

Na
(29)

is the basic reproductive number corresponding to species i, i = 1, . . . , n. Then, the following
result is established.

Theorem 5 The disease-free equilibrium, Ev
0 , of model (27) is locally asymptotically stable for

Rv
0 < 1. When Rv

0 > 1, the disease-free equilibrium becomes unstable, and it emerges as a unique
endemic equilibrium which is globally asymptotically stable.

Reasoning along the lines of the previous section, it can be shown that the behaviour of Rv
0 has

a threshold which can be derived from the formula

∂(Rv
0)

2

∂Nvi

= 1

Nv
(−(Rv

0)
2 + 2(Rv

0i
)2). (30)

Rv
0 increases or decreases if σ = Rv

0i
/Rv

0 is greater or less than 1/
√

2. Furthermore, once σi >

1/
√

2, Rv
0 will keep increasing when the mosquito population increases, since Rv

0i
becomes greater.

4. General case

In this section, we generalize the previous models by taking into account interactions of n

species of birds with m species of mosquitoes. Using the notation of the first section, the model
is given by

dSi

dt
= �i −

m∑
j=1

Nvj

(Nv1 + · · ·Nvm
)

bjβij

(N1 + · · · + Nn)
SiIvj

− μiSi

dIi

dt
=

m∑
j=1

Nvj

(Nv1 + · · ·Nvm
)

bjβij

(N1 + · · · + Nn)
SiIvj

− (γi + μi + αi)Ii

dIvj

dt
=

n∑
i=1

bjβvji

N1 + · · · + Nn

(Nvj
− Ivj

)Ii − μvj
Ivj

(31)

dNi

dt
= �i − μiNi − αiIi

with i = 1, . . . , n, j = 1, . . . , m
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The next generation operator associated with the disease-free equilibrium Si = N̄i , Ii = 0,
i = 1, . . . , n, and Ivj

= 0, j = 1, . . . , m is a (n + m) × (n + m) matrix of the form


 =
(

0 G1

G2 0

)
,

where G1 and G2 are n × m and m × n matrices, respectively, given by

G1 = 1

N̄Nv

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1β11Nv1N̄1

γ1 + μ1 + α1
· · · bmβ1mNvm

N̄1

γ1 + μ1 + α1

b1β21Nv1N̄2

γ2 + μ2 + α2
· · · bmβ2mNvm

N̄2

γ2 + μ2 + α2· · · · ·
· · · · ·
· · · · ·

b1βn1Nv1N̄n

γn + μn + αn

· · · bmβnmNvm
N̄n

γn + μn + αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G2 = 1

N̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1βv11Nv1

μv1

· · · b1βv1n
Nv1

μv1

b2βv21Nv2

μv2

· · · b2βv2n
Nv2

μv2· · · · ·
· · · · ·
· · · · ·

bmβvm1Nvm

μvm

· · · bmβvmn
Nvm

μvm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with N̄ = N̄1 + · · · N̄n, N̄i = �i/μi , and Nv = Nv1 + · · · + Nvm
.

The basic reproductive number, R0, is equal to the spectral radius of 
. In this general case, it is
difficult to obtain a closed expression, even for two species of birds and two species of mosquitoes.
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Figure 3. Rv
0 for different mosquito population sizes.
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Figure 4. R0 for different population sizes of Common Grackle species.
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Figure 5. R0 for different population sizes of Northern Flicker species.

It is clear that R0 must depend on the competence of each species as well as on its population
density like in the cases previously analysed. We study numerically how the value of R0 changes
with respect of the population size C. pipiens and A. albopictus when they interact with two
species of birds (Common Grackle and Northern Flicker). The values of the parameters used in
the simulations are given in Tables 1 and 2. According to [31], the two species of mosquitoes
have nearly the same transmission efficiency for WNV in the laboratory, but C. pipiens feeds
primarily on avian host, while A. albopictus is an opportunistic vector, since it feeds on a variety
of hosts [27]. For a biting rate of 0.5 for C. pipiens and 0.1 for A. albopictus, we obtain the results
illustrated in Figure 3. From this figure, we observe that in the long run, the basic reproduction
number of each species increases, although not at the same speed, that is, the basic reproduction
number of C. pipiens increases much more than that of A. albopictus. This result is in accordance
with the idea that feeding preferences of mosquitoes are a major factor in disease transmission.
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Now, we want to study the behaviour of R0 when we increase the population of one of the bird
species. We consider again the example discussed in Sections 2.3 and 2.4. Figures 4 and 5 illustrate
the dependence of R0 when we increase the population of Common Grackle and Northern Flicker,
respectively. We see in Figure 4 that R0 reaches a maximum value when the population is equal
to 800 and then decreases. This is consistent with the result obtained when we consider only one
species of mosquitoes, that is, there is a threshold condition on the bird population and according
to that R0 increases or decreases. Figure 5 shows that, for the Northern Flicker, R0 decreases all
the time since ρ2 never reaches the threshold value.

5. Conclusions

In this work, we formulated mathematical models to study the interactions of several species of
birds and mosquitoes in the transmission of WNV. When we considered several species of birds
(mosquitoes) and only one of mosquitoes (birds), we found that the basic reproductive number in
each case is the mean of the basic reproductive numbers of each species, weighted by the relative
abundance of its population in the location. The basic reproductive numbers Ra

0 , and Rv
0 given in

Equations (4) and (28) measure the relative importance of a specific bird and mosquito species,
respectively, in the prevalence of WNV. Thus, the competence of a species, as well as its relative
abundance determines its role in the spread of the disease. One interesting result is that species
that would not be affected by the disease if isolated can suffer outbreaks when they share the same
habitat with a sufficiently abundant species with a high basic reproductive number. This is shown
in Figure 2 for Northern Flicker and Common Grackle. We observe that the outbreak initiated
by the Common Grackle is transmitted to the Northern Flicker which has a basic reproduction
number less than one.

Our results indicate that the probability of invasion of WNV is sensitive to the variations of
the population densities. The sensitivity analysis of the basic reproductive number with respect to
the population size of a bird species indicates that Ra

0 is an increasing function of the population
size if Ra

0i
/Ra

0 >
√

2, and Ra
0 is a decreasing function when Ra

0i
/Ra

0 <
√

2. This last result can
be explained by the fact that many mosquito bites are wasted in bird species that are not very
effective in the transmission of the disease. It is interesting to observe that Ra

0 is proportional to

Figure 6. Distribution of C. pipiens in North America. Data taken from [28].
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√
Nv/N̄ . This implies that if the mosquito population is small compared with the bird population,

then the probability of an outbreak is low, independently of the transmission competence of the
birds. A similar threshold behaviour is obtained when we consider the model for the interaction of
several species of mosquitoes and only one species of birds, with threshold value equal to 1/

√
2.

Turell et al. [32] show that some Culex species can be a very efficient enzootic vectors in regions
where they are abundant, because they feed primarily on avian hosts. In particular, C. pipiens has
been recognized as a very competent vector in Canada and the northern part of the USA, while
Culex qinquefaciatus is only a moderate one [32]. In contrast, the same authors show that Aedes
species are not good enzootic vectors, but can be bridge vectors between birds and humans.

Culex pipiens has a distribution that roughly includes the northern half of the USA. The range
of this species begins just north of Maine, along the Atlantic seaboard, and extends to the state of
Washington in the west with some extension into southern British Columbia. The range along the
Pacific coast extends into northern California and then east on a relatively straight line to North
Carolina (Figure 6) [5]. On the other hand, C. quinquefasciatus is distributed from the southern
of USA all the way down to the middle of Argentina, with large variations in the population
density [17]. In contrast, the relative abundance of C. pipiens, and C. quinquefaciatus is quite
small compared with mosquitoes of the Aedes family, specially Aedes aegypty, which is the
principal vector of dengue disease [13]. Since the main vectors of WNV are not common in
Mexico, this suggest that a plausible explanation for the absence of outbreaks of WNV in this
country is the absence of efficient enzootic vectors. However, more entomological studies have to
be done, taking into account the geographical and climatological conditions, in order to measure
the transmission efficiency of the local species.
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