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We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation 
with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show 
the existence of breather solutions in the limit where both linear and nonlinear intersite couplings 
vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. 
Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in 
the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher 
amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling 
limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

We study breather solutions of a discrete nonlinear Schrödinger 
equation with a nonlocal nonlinearity of Hartree type, modeling 
the propagation of laser beams in a waveguide array built on a 
nematic liquid crystal substratum. The model was proposed by 
Fratalocchi and Assanto [4], and was motivated by experimental 
and theoretical work reported in [5,6], see also [18]. The interac-
tion between electromagnetic waves and the liquid crystal director 
field gives rise to a nonlocal nonlinearity for the amplitude equa-
tion of a modulated plane wave. This nonlocality has important 
consequences for the propagation of beams in a bulk (3-D) ne-
matic liquid crystal, as it can stabilize optical solitons propagating 
through a liquid crystal sample with an appropriate pre-tilt [2,
10,12,15]. Related experimental and theoretical work is reviewed 
in [14]. The present work suggests some other new effects intro-
duced by the nonlocal nonlinearity in a periodic, waveguide array 
geometry for the pre-tilted nematic liquid crystal sample.

The first part of the paper concerns the existence of spatially 
localized solutions of breather type. We present two types of re-
sults. First we consider the existence of breather solutions in an 
analogue of the well-known anticontinuous limit of the cubic NLS 
equation [9,13,16]. In the present case this limit applies to the van-
ishing of two parameters, a linear coupling parameter and a nonlo-
cality parameter that is specific to the Hartree-type nonlinearity of 
the nonlocal DNLS model of [4]. The limiting breathers are identi-
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cal to the anticontinuous limit breathers of the cubic DNLS model, 
and we show that a similar continuation result is applicable to the 
present case as well. The second result concerns solutions obtained 
in the limit where only the linear coupling vanishes. The result-
ing system has a nonlocal nonlinear coupling between the sites, 
but we can still find breather solutions. These solutions can be 
in some cases found explicitly, and have slightly different profiles 
than the ones obtained in the anticontinuous limit of the cubic 
NLS. An interesting feature of these solutions is that the amplitude 
is larger at interfaces between sites with zero and nonzero ampli-
tude in the vanishing linear coupling limit. The continuation result 
is shown for the simplest case where the nonvanishing amplitudes 
occur at consecutive sites and have the same sign. The presence of 
interfaces in more general cases is confirmed numerically.

Despite these differences with the cubic NLS, we see that for 
moderate values of the linear coupling parameter, the nonlocal so-
lutions remain well localized near the sites where the amplitude 
does not vanish in the uncoupled case. On the other hand, the lin-
ear stability analysis shows the possibility of more internal modes. 
We show that the one-peak breather, which, as in the cubic NLS 
case is orbitally stable, has internal modes (see [16,17] for the 
absence of internal modes in the cubic DNLS). The number of in-
ternal modes appears to vary with the nonlocality parameter in the 
nonlinear term. Also, the internal modes have maxima at different 
distances from the peak of the breather. We see that as the point 
eigenvalues get closer to the expected continuous spectrum, the 
maxima of the corresponding internal modes move further away 
from the peak.

The paper is organized as follows. In Section 2 we state and 
prove results on the existence of breather solutions. In Section 3
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we study numerically some breather solutions and their linear sta-
bility.

2. Nonlocal discrete NLS equation and breather solutions

We consider the one-dimensional discrete NLS equation

u̇n = δi(un+1 + un−1 − 2un) + 2γ tanh
κ

2
i(

∑
m∈Z

e−κ |m−n||um|2)un

n ∈ Z, (2.1)

with δ, γ , κ real constants, κ > 0. The model was proposed by 
Fratalocchi and Assanto [4].

Eq. (2.1) is formally the Hamiltonian system

u̇n = −i
∂ H

∂u∗
n
, n ∈ Z, with (2.2)

H = δ
∑
n∈Z

|un+1 − un|2 − γ tanh
κ

2

∑
n∈Z

∑
m∈Z

|um|2e−κ |m−n||un|2.

(2.3)

The quantity P = ∑
n∈Z |un|2, also denoted as the power, is a con-

served quantity.
We consider solutions of (2.1) of the breather form

un = e−iωt An , with ω real, and A : Z → C independent of t . Such 
A satisfies

−ωAn = δ(An+1 + An−1 − 2An)

+ 2γ tanh
κ

2
(
∑
m∈Z

e−κ |m−n||Am|2)An, ∀n ∈ Z. (2.4)

In Theorem 2.1 below we show the existence of real solutions 
in the “anticontinuous”, and local limit, that is for |δ| small, and κ
large respectively. The limit κ → ∞, δ = 0 breathers are identical 
to the anticontinuous δ = 0 breathers of the cubic DNLS equation 
examined by [9] and other authors. The second existence result, 
Theorem 2.4, concerns continuation from solutions of the δ = 0
problem, i.e. with κ fixed but otherwise arbitrary. The continua-
tion argument is only presented for some special cases. Even these 
cases reveal some interesting departures from the properties of the 
power nonlinearity breathers.

Let X = l2(Z, R), i.e. the set of real-valued configurations f
on Z, with the norm ‖ f ‖ = (

∑
n∈Z | fn|2)1/2. Let {ên}n∈Z be the 

standard basis in X .
For A ∈ X , ω ∈ R, and δ, μ real, with μ �= 0, define Fn , n ∈ Z, 

by

Fn = δ(An+1 + An−1 − 2An)

+ 2γ tanh
κ

2
(
∑
m∈Z

e−κ |m−n| A2
m)An + ωAn, (2.5)

where κ = μ−2.
For A ∈ X , ω ∈R, and δ = μ = 0, define Fn , n ∈ Z, by

Fn = 2γ A3
n + ωAn. (2.6)

Also, for c > 0, δ, μ real, and A ∈ X , ω ∈ R, define F+ by

F+ =
∑
n∈Z

A2
n − c. (2.7)

Let X = X × R with the norm ‖(a, b)‖X = (‖a‖2 + |b|2)1/2, 
and let Y = R

2 with the Euclidean norm. X, Y are real Banach 
spaces. Let BZ(z, r) denote the ball of radius r around the point 
z of a Banach space Z. We check that F = ({Fn}n∈Z(A, ω, δ, μ),

F+(A, ω, δ, μ)), with Fn , F+ as in (2.5)–(2.7), defines a function 
F : X × Y → X.
The dependence of F on c is not made explicit in this notation, 
and the results below are valid for all c > 0.

Fix c > 0 and consider a nontrivial solution (A, ω) = ( Ã, ω̃) of 
F (A, ω, 0, 0) = 0. By (2.6), (2.7), and A ∈ X , such a solution is de-
termined by two finite disjoint subsets S+ , S− of Z, and has the 
form

ω̃ = −2γ α2, Ãn = ±α, n ∈ S±; Ãn = 0,

n /∈ S+ ∪ S−, (2.8)

where α is defined through (|S+| + |S−|)α2 = c. We also let 
S0 = Z \ (S+ ∪ S−).

Theorem 2.1. Fix c > 0 and consider a nontrivial solution (A, ω) =
( Ã, ω̃) of F (A, ω, 0, 0) = 0, as in (2.8). Then there exists ε0 > 0, and 
a unique continuous two-parameter family (A, ω) : BY(0, ε0) → X, sat-
isfying (A(0, 0), ω(0, 0)) = ( Ã, ω̃), and F (A(δ, μ), ω(δ, μ), δ, μ) = 0, 
∀(δ, μ) ∈ BY(0, ε0).

Remark 2.2. The fact that (2.5) involves κ = μ−2, and the unique-
ness of the continued branch imply that solutions (A(δ, −μ),

ω(δ, −μ)), (A(δ, μ), ω(δ, μ)) of (2.4) coincide. The definition
κ = μ−2 keeps the exponent of e−κ |·| in (2.5) negative in the vicin-
ity of μ = 0, unlike e.g. the choice κ = μ−1. This allows us to apply 
a standard continuation statement directly, see the proof below.

Proof. We will apply the Implicit Function Theorem around a solu-
tion (x, y) = (x0, y0) of F = 0, where x0 = ( Ã, ω̃), Ã, ω̃ as in (2.8), 
and y0 = (0, 0) of F = 0. We must check that the (Fréchet) deriva-
tive (i) D1 F (x0, y0) exists and is a linear isomorphism of X, and 
that (ii) F and D1 F are both continuous at (x0, y0), see e.g. [20].

We compute D1 F at (x0, y0) using (2.6) and taking partial 
derivatives of Fn , n ∈ Z, F+ with respect to An , n ∈ Z, ω,

∂ Fn

∂ An
= ω̃ + 6γ Ã2

n,
∂ Fn

∂ Al
= 0, ∀n ∈ Z, l ∈ Z \ {n}, (2.9)

∂ Fn

∂ω
= Ãn,

∂ F+
∂ An

= 2 Ãn, ∀n ∈ Z,
∂ F+
∂ω

= 0. (2.10)

It is easy to check that the resulting infinite matrix of partial 
derivatives is the derivative D1 F at (x0, y0), we omit the details.

To check invertibility of D1 F at (x0, y0), we enumerate the 
entries of D1 F as follows. The components of F are ordered as 
Fν+( j) , j ∈ S+ , Fν−( j) , j ∈ S− , F+ , Fν0( j) , j ∈ S0, where the ν± , ν0
enumerate the elements of S± , S0 respectively. The variables are 
ordered as Aν+( j) , j ∈ S+ , Aν−( j) , j ∈ S− , ω, Aν0( j) , j ∈ S0. Then 
D1 F ( Ã, ω̃, 0, 0) has the block diagonal form

D1 F ( Ã, ω̃,0,0) =
[

M1 0
0 M2

]
, (2.11)

where M1 is (m + 1) × (m + 1), m = |S+| + |S−|, and
M2 = −2γα2 Ĩ0, with Ĩ0 the identity in X̃0, the span of the ên , 
n ∈ S0. To show that D1 F ( Ã, ω̃, 0, 0) is invertible it is enough to 
check that M1 is nonsingular. The matrix M1 has the block form

M1 =
[

A± C
2C T 0

]
, (2.12)

where A± = 4γα2 Im , Im is the m × m identity, C = [C1, . . . , Cm]T , 
with C j = α, if j = 1, . . . , |S+|, C j = −α, if j = |S+| + 1, . . . , |S+| +
|S−|. Applying the LU algorithm we can then bring M1 to the up-
per triangular form

U =
[

A± c̃
0 ρ

]
, (2.13)

with ρ = 1/2(|S+| + |S−|) �= 0, thus M1 is nonsingular.
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The continuity of F at (x0, y0) is checked in Lemma 2.6.
To show the continuity of D1 F at (x0, y0) we will be using the 

fact that for y �= y0, (2.5) yields

∂ Fn

∂ An
= −2δ + ω + 2γ tanh

κ

2
(
∑
m∈Z

e−κ |m−n| A2
m + 2A2

n), ∀n ∈ Z,

∂ Fn

∂ Al
= δ + 4γ tanh

κ

2
e−κ |l−n| Al An, ∀n ∈ Z, l ∈ {n − 1,n + 1},

∂ Fn

∂ Al
= 4γ tanh

κ

2
e−κ |l−n| Al An, ∀n ∈ Z,

l ∈ Z \ {n − 1,n,n + 1}, (2.14)
∂ Fn

∂ω
= An,

∂ F+
∂ An

= 2An, ∀n ∈ Z,
∂ F+
∂ω

= 0. (2.15)

We check that the resulting infinite matrix of partial derivatives 
is indeed the derivative D1 F . The continuity of D1 F at (x0, y0) is 
shown in Lemma 2.7 below. �

We now consider real solutions of (2.4) with δ = 0, and fixed 
κ > 0. Fix c > 0 and consider a nontrivial solution (A, ω) of F = 0, 
with F as in (2.5). We look for solutions A ∈ X , with An �= 0 for 
n ∈ S A , S A is a finite set, and An = 0, ∀n ∈ S0 = Z \ S A . Then F = 0, 
F as in (2.5), becomes

−2γ tanh
κ

2
(
∑

m∈S A

e−κ |m−n| A2
m) = ω, ∀n ∈ S A . (2.16)

This is a linear equation for the components Jm = A2
m , m ∈ S A , of 

the vector J , and we also write it as

M J = (−2γ tanh
κ

2
)−1ωE, (2.17)

with E = [1, . . . , 1]T ∈ R
|S A | . M is defined implicitly by (2.16), 

(2.17), and we see that it is symmetric and that all its entries are 
positive. By (2.16) we see that ω and γ must have opposite signs.

If M is nonsingular, and M−1E is positive, then the solutions 
of F = 0, F+ = 0, F , F+ as in (2.5), (2.7) are of the form (A, ω) =
( Ã, ω̃), with

ω̃ = −2γ tanh
κ

2
c[

∑
m∈S A

(M−1E)m]−1, Ãn = ±
√

J̃n, n ∈ S±,

Ãn = 0, n ∈ S0, (2.18)

where

J̃ = c[
∑

m∈S A

(M−1E)m]−1M−1E, (2.19)

and S+ , S− are disjoint subsets of S A satisfying S A = S+ ∪ S− .
Note that (2.17) can have solutions even in the case where 

M is singular. It appears however that M is nonsingular for all 
choices of the finite set S A .

An example is given by the choice S A = {n0, n0 + 1, . . . , n0 +m}, 
i.e. m + 1 consecutive sites. Then M is a symmetric (m + 1) ×
(m + 1) Toeplitz matrix with first row [1, ρ, ρ2, . . . , ρm], ρ = e−κ . 
For m = 0, 1, the invertibility of M is immediate. For m ≥ 2, M−1

is a symmetric tridiagonal matrix with

diag(M−1) = ((1 − ρ2)−1, (1 − ρ2)−1(1 + ρ2),

. . . , (1 − ρ2)−1(1 + ρ2), (1 − ρ2)−1), (2.20)

and

(M−1)k,k+1 = −(1 − ρ2)−1ρ, ∀k = 1, . . . ,m. (2.21)

Then
M−1E = 1

1 + ρ
[1,1 − ρ, . . . ,1 − ρ,1]T . (2.22)

By (2.18), (2.22)

ω̃ = −2γ tanh
κ

2

c

1 + ρ
[m(1 − ρ) + 1 + ρ]. (2.23)

Remark 2.3. By (2.18), (2.19) the vector M−1E is, up to scalars, the 
amplitude profile at the sites n0, . . . , n0 + m. Since 1 − ρ < 1, the 
amplitude is larger at the two endpoints of n0 and n0 + m of S A
(for m ≥ 2). All other sites have the same amplitude.

We now formulate a continuation statement for the above δ = 0
breathers. The notation is similar to that of Theorem 2.1. Let c > 0, 
and fix κ �= 0 and μ satisfying μ−2 = κ . For A ∈ X , ω ∈ R, and δ
real, let

Gn(A,ω, δ) = Fn(A,ω, δ,μ), n ∈ Z;
G+(A,ω, δ) = F+(A,ω, δ,μ) (2.24)

with Fn , F+ as in (2.5), (2.7).
Let X = X × R with the norm ‖(a, b)‖X = (‖a‖2 + |b|2)1/2, and 

let Y = R with the Euclidean norm. X, Y are real Banach spaces. 
Let BZ(z, r) denote the ball of radius r around the point z of a 
Banach space Z. We check that G = ({Gn}n∈Z(A, ω, δ), G+(A, ω, δ)), 
with Gn , G+ as in (2.24), defines a function G : X × Y → X. The 
dependence of G on c, κ is not made explicit in the above notation, 
and the results below are valid for all c, κ > 0 (unless otherwise 
specified).

Theorem 2.4. Fix c > 0, and κ > 0. Let m be a positive integer, and 
consider a nontrivial solution (A, ω) = ( Ã, ω̃) of G(A,ω,0) = 0 as 
in (2.18), (2.19), with S A = {n0, n0 + 1, . . . , n0 + m}. Then there ex-
ists δ0 > 0, and a unique continuous one-parameter family (A, ω) :
BY(0, δ0) → X, satisfying (A(0, 0), ω(0)) = ( Ã, ω̃), and G(A(δ),

ω(δ), δ) = 0, ∀δ ∈ BY(0, δ0).

Proof. We will apply the Implicit Function Theorem around a solu-
tion (x, y) = (x0, y0) of G = 0, where x0 = ( Ã, ω̃), Ã, ω̃ as in (2.18), 
(2.19), and y0 = 0 of G = 0. We must check that the (Fréchet) 
derivative (i) D1G(x0, y0) exists and is a linear isomorphism of X, 
and that (ii) G and D1G are both continuous at (x0, y0), see 
e.g. [20].

To check invertibility of D1G at (x0, y0), we enumerate the 
entries of D1G as follows. The components of G are ordered as 
GνA( j) , j ∈ S A , G+ , Gν0( j) , j ∈ S0, where the νA , ν0 enumer-
ate the elements of S A , S0 respectively, and νA( j) = j − n0 + 1, 
j = 1, . . . , m + 1. The variables are ordered as AνA( j) , j ∈ S A , ω, 
Aν0( j) , j ∈ S0.

By (2.14), (2.15) and (2.18), (2.19) the matrix of partial deriva-
tives (checked to be the derivative) D1G( Ã, ω̃, 0) has the block 
diagonal form

D1G( Ã, ω̃,0) =
[

M1 0
0 M2

]
, (2.25)

where M1 is (m + 2) × (m + 2), |S A | = m + 1, and M2 is diagonal, 
with entries

M2(n,n) = ∂Gn

∂ An
( Ã, ω̃,0)

=
{

ω̃(1 − eκ |n−n0|), if n < n0
ω̃(1 − eκ |n−(n0+m)|), if n > n0 + m.

(2.26)

M2 is then an isomorphism in X̃0, the span of the ên , n ∈ S0, to 
show that D1G( Ã, ω̃, 0) is invertible it is enough to check that M1
is nonsingular.
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The matrix M1 has the form

M1 =
[

M+,+ C
2C T 0

]
, (2.27)

where C = [C1, . . . , Cm+1]T , with C j = Ãn0+ j−1, Ã j as in (2.18). 
Furthermore

M+,+ = 4γ tanh
κ

2
c[

∑
m∈S A

(M−1E)m]−1 1 − ρ

1 + ρ
M̃, ρ = e−κ ,

(2.28)

where M̃ is an (m + 1) × (m + 1) symmetric matrix. For m ≥ 3, M̃
has the following structure: The first row r1 of M̃ is

r1 = [ 1

1 − ρ
,

ρ√
1 − ρ

,
ρ2

√
1 − ρ

, . . . ,
ρm−1

√
1 − ρ

,
ρm

1 − ρ
], (2.29)

and the m + 1-th column Cm+1 of M̃ is

Cm+1 = [ ρm

1 − ρ
,

ρm−1

√
1 − ρ

, , . . . ,
ρ√

1 − ρ
,

1

1 − ρ
]T . (2.30)

By symmetry r1, and Cm+1 also define the first column C1, and 
m + 1-th row rm+1 of M̃ respectively. The remaining entries M̃i, j
with i, j ∈ {2, . . .m} form a symmetric (m − 1) × (m − 1) Toeplitz 
matrix with first row r̃ given by

r̃ = [1,ρ,ρ2, . . . , ρm−2]. (2.31)

The cases m = 1, 2 are treated separately, and M+,+ is easily seen 
to be invertible.

For m ≥ 3 M̃ has a symmetric tridiagonal inverse M̃−1 with 
diagonal entries

diag M̃−1 = 1

1 − ρ2
[1 − ρ,1 + ρ2,1 + ρ2, . . . ,1 + ρ2,1 − ρ],

(2.32)

and off-diagonal entries

M̃−1(1,2) = M̃−1(m,m + 1) = − ρ

1 − ρ2

√
1 − ρ, (2.33)

M̃−1( j, j + 1) = − ρ

1 − ρ2
, j = 2, . . . ,m − 1. (2.34)

By (2.28) the matrix M+,+ is therefore invertible. To check that M1
is invertible we use the fact that by (2.27),

det(M1) = (−2C T M−1+,+C)det(M+,+), (2.35)

see e.g. [1]. Using the expressions for M−1+,+ , C above, we compute

−2C T M−1+,+C = −2 + (m − 1)(1 − ρ)

2γ (1 + ρ) tanh κ
2

, (2.36)

which does not vanish. This concludes the proof of invertibility of 
D1G at (x0, y0). The continuity of G and D1G at (x0, y0) is shown 
in Lemmas 2.8, 2.9 respectively. �
Remark 2.5. We can obtain analogous continuation results with 
ω fixed, e.g. as in [13]. We expect the proofs to be similar. The 
present version is more natural for studies of the dynamics of the 
lattice in the reduced phase space, obtained first by fixing P , see 
e.g. [11] for a finite lattice. The continuation arguments also apply 
to finite lattices since the blocks corresponding to S+ , S0 in D1 F , 
and D1G are the same.
We now show the continuity of the functions F , G and their 
derivatives at the continued solutions.

Lemma 2.6. Fix c > 0 and consider the solution (x, y) = (x0, y0) of 
F = 0, with x0 = ( Ã, ω̃), y0 = (δ, μ) = (0, 0), as in (2.8). Then F is 
continuous at (x0, y0).

Proof. To check the continuity of F at (x0, y0) we examine 
‖F (x, y) − F (x0, y0)‖ as (x, y) = (A, ω, δ, μ) approaches (x0, y0) in 
X × Y. F (x0, y0) is evaluated using (2.6), (2.7). F (x, y) is evaluated 
using (2.5), (2.7), if y �= y0, and (2.6) otherwise. We have

F+(x,y) − F+(x0,y0) = ‖A‖2 − ‖ Ã‖2 → 0 (2.37)

as ‖A − Ã‖ → 0. Also, for y �= y0, n ∈ Z

Fn(x,y) − Fn(x0,y0) = δ(�A)n + ωAn − ω̃ Ãn + 2Bn, (2.38)

with

Bn = γ tanh
κ

2

(∑
m∈Z

e−κ |m−n| A2
m

)
An − γ Ã3

n. (2.39)

Letting B = {Bn}n∈Z , we then have(∑
n∈Z

|Fn(x,y) − Fn(x0,y0)|2
)1/2

≤ |δ|‖�‖X,X‖A‖ + |ω|‖A − Ã‖ + |ω − ω̃‖ Ã‖ + 2‖B‖. (2.40)

The first three terms vanish as A → Ã in X , and |δ| → 0, ω → ω̃. 
To estimate ‖B‖, let

gn(A,μ) =
∑
m∈Z

e−κ |m−n| A2
m, n ∈ Z, (2.41)

and write

B = γ (K + L + M), with Kn = (tanh
κ

2
− 1)gn(A,μ)An,

Ln = (gn(A,μ) − A2
n)An, Mn = A3

n − Ã3
n, ∀n ∈ Z. (2.42)

By (2.41), we have gn(A, μ) ≤ ‖A‖2, ∀n ∈ Z, hence

‖K‖2 ≤ | tanh
κ

2
− 1|

∑
n∈Z

|gn(A,μ)|2 A2
n

≤ | tanh
κ

2
− 1‖A‖6. (2.43)

Also,

‖M‖2 ≤
∑
n∈Z

(A2
n + An Ãn + Ã2

n))2|An − Ãn|2

≤ C(‖A‖,‖ Ã‖)‖A − Ã‖2, (2.44)

with C a fixed function of ‖A‖, ‖ Ã‖, and

‖L‖2 ≤
∑
n∈Z

⎛
⎝ ∑

m∈Z\{n}
e−κ |m−n| A2

m

⎞
⎠

2

|An|2 ≤ e−2κ‖A‖6. (2.45)

By (2.43), (2.44), (2.44), and (2.42), ‖B‖ also vanishes as μ → 0
(i.e. κ → +∞), A → Ã in X , as required. �
Lemma 2.7. Fix c > 0 and consider the solution (x, y) = (x0, y0) of 
F = 0, with x0 = ( Ã, ω̃), y0 = (δ, μ) = (0, 0), as in (2.8). Then D1 F
is continuous at (x0, y0).
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Proof. To show the continuity of D1 F at (x0, y0), it is enough to 
show that

‖[D1 F (x,y) − D1 F (x0,y0)]v‖ ≤ β‖v‖, ∀v ∈ X, (2.46)

with β that is independent of v , and satisfies β → 0 as (x, y) →
(x0, y0) in X × Y.

Let v = ({vn}n∈Z, v+), w = ({wn}n∈Z, w+), where

w = M v, M = [D1 F (x,y) − D1 F (x0,y0)]. (2.47)

Then, by (2.9), (2.10), (2.14), (2.15), and y �= y0, n ∈ Z,

wn =
∑
m∈Z

Mn,m vm + Mn,+v+

= δ(�v)n + (ω − ω̃)vn

+ 2γ [tanh
κ

2
(3A2

n +
∑

m∈Z\{n}
e−κ |m−n| A2

m) − 3 Ã2
n]vn

+ 4γ tanh
κ

2
(

∑
m∈Z\{n}

e−κ |m−n| Am vm)An + 2(An − Ãn)v+

= δ(�v)n + (ω − ω̃)vn + 2γ ( J ′
n + K ′

n + L′
n)

+ 2(An − Ãn)v+, (2.48)

where

J ′
n = (3 tanh

κ

2
A2

n − 3 Ã2
n)vn,

K ′
n = tanh

κ

2
(

∑
m∈Z\{n}

e−κ |m−n| A2
m)vn,

L′
n = 2 tanh

κ

2
(

∑
m∈Z\{n}

e−κ |m−n| Am vm)An, ∀n ∈ Z. (2.49)

Then

|K ′
n| ≤ | tanh

κ

2
|‖A‖2|vn|, ∀n ∈ Z, (2.50)

therefore∑
n∈Z

|K ′
n|2 ≤ | tanh

κ

2
|2‖A‖4‖v‖2. (2.51)

Similarly by (2.49),

J ′
n = 3[(tanh

κ

2
− 1)A2

n + (A2
n − Ã2

n)]vn, ∀n ∈ Z, (2.52)

therefore∑
n∈Z

| J ′
n|2 ≤ 18[(tanh

κ

2
− 1)2 sup

n∈Z
|An|4 + sup

n∈Z
| Ã2

n − A2
n|2]‖v‖2

≤ 18[(tanh
κ

2
− 1)2‖A‖4

+ 2‖A − Ã‖2(‖A‖2 + ‖ Ã‖2)]‖v‖2. (2.53)

Also by (2.49),∑
n∈Z

|L′
n|2 ≤ 4| tanh

κ

2
|2

∑
n∈Z

|
∑

m∈Z\{n}
e−κ |m−n| Am vm|2 A2

n

≤ 4| tanh
κ

2
|2

∑
n∈Z

(
∑

m∈Z\{n}
e−2κ |m−n| A2

m)(
∑

m∈Z\{n}
v2

m)A2
n

≤ 4| tanh
κ

2
|2

∑
n∈Z

e−2κ (
∑

m∈Z\{n}
A2

m)‖v‖2 A2
n

≤ 4| tanh
κ |2e−2κ‖A‖4‖v‖2. (2.54)

2

Also,

w+ =
∑
m∈Z

M+,m vn + M+,+v+ = 2
∑
m∈Z

(Am − Ãm)vm, (2.55)

therefore

w2+ ≤ 4‖A − Ã‖2‖v‖2. (2.56)

Combining (2.48), (2.51), (2.53), (2.54), (2.56),

‖w‖2
X =

∑
n∈Z

|wn|2 + |w+|2 ≤ β2‖v‖2, (2.57)

where

β2 ≤ 40
(
δ‖�‖X,X + (ω − ω̃)2 + 2‖A − Ã‖2 + γ 2| tanh

κ

2
|2‖A‖4

+ 18[γ 2(tanh
κ

2
− 1)2‖A‖4 + 2‖A − Ã‖2(‖A‖2 + ‖ Ã‖2)]

+ 4γ 2| tanh
κ

2
|2e−2κ‖A‖4). (2.58)

Thus β → 0 as (x, y) → (x0, y0), as required in (2.46). �
Lemma 2.8. Fix c > 0, and fix κ > 0. Then G : X × Y → X, defined as in 
(2.24), is continuous in X × Y.

Proof. To avoid extra notation we will show the continuity of G
at (x0, y0) = ( Ã, ω̃, 0), with Ã, ω̃ as in (2.18) with S A = {n0, n0 +
1, . . . , n0 + m}, as needed for the implicit function theorem. The 
proof is applicable to arbitrary (x0, y0) ∈ X × Y.

We show that ‖G(x, y) − G(x0, y0)‖ → 0 as (x, y) = (A, ω, δ)
approaches (x0, y0) in X × Y.

By G+ = F+ , we have G+(x, y) − G+(x0, y0) → 0 as
‖A − Ã‖ → 0, as in (2.37).

By (2.24), (2.5)(∑
n∈Z

|Gn(x,y) − Gn(x0,y0)|2
)1/2

≤ |δ|‖�‖X,X‖A‖ + |ω|‖A − Ã‖ + |ω − ω̃|‖ Ã‖
+ 2|γ | tanh

κ

2
‖B̃‖, (2.59)

with B̃ = {B̃n}n∈Z ,

B̃n = γ tanh
κ

2

(
gn(A)An − gn( Ã) Ãn

)
, (2.60)

and gn(A) as in (2.41), ∀n ∈ Z. The first three terms in (2.59) vanish 
as A → Ã in X , and |δ| → 0, ω → ω̃. To estimate ‖B̃‖ we use

|B̃n| ≤ |gn(A)||An − Ãn| + |gn(A) − gn( Ã)|| Ãn|
≤ ‖A‖2|An − Ãn| + | Ãn|

∑
m∈Z

|A2
m − Ã2

m|

≤ ‖A‖2|An − Ãn| + | Ãn|(‖A‖ + ‖ Ã‖)‖A − Ã‖. (2.61)

By (2.60), (2.61) it follows that ‖B̃‖ → 0 as ‖A − Ã‖ → 0, as re-
quired. �
Lemma 2.9. Fix c, κ > 0 and consider G : X × Y → X, defined as 
in (2.24), Then D1G is continuous in X × Y.

Proof. To avoid extra notation we will show the continuity of D1G
at (x0, y0) = ( Ã, ω̃, ̃δ), with Ã, ω̃ as in (2.18) with S A = {n0, n0 +
1, . . . , n0 + m}, δ̃ = 0 as needed for the implicit function theorem. 
The proof is applicable to arbitrary (x0, y0) ∈ X × Y.
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To show the continuity of D1G at (x0, y0), it is enough to show 
that

‖[D1G(x,y) − D1G(x0,y0)]v‖ ≤ β‖v‖, ∀v ∈ X, (2.62)

with β that is independent of v , and satisfies β → 0 as (x, y) →
(x0, y0) in X × Y.

Let v = ({vn}n∈Z, v+), w = ({wn}n∈Z, w+), where

w = M v, M = [D1G(x,y) − D1G(x0,y0)]. (2.63)

It is clear from the definitions of F , and G , in (2.5), (2.7), and 
(2.24) respectively that D1 F (A, ω, δ, μ) = D1G(A, ω, δ) for any 
fixed μ2 = κ−1, i.e. μ �= 0, and we calculate D1G using (2.14), 
(2.15). Then

wn =
∑
m∈Z

Mn,m vm + Mn,+v+

= (δ − δ̃)(�v)n + (ω − ω̃)vn

+ 2γ [tanh
κ

2
[(gn(A) − gn( Ã)) + 2A2

n − 2 Ã2
n]vn

+ 4γ [tanh
κ

2

⎡
⎣(

∑
m∈Z\{n}

Am vm)An − (
∑

m∈Z\{n}
Ãm vm) Ãn

⎤
⎦

+ 2(An − Ãn)v+
= (δ − δ̃)(�v)n + (ω − ω̃)vn + 2γ [tanh

κ

2
(2 Ĩn + K̃n + 2L̃n)

+ 2(An − Ãn)v+, (2.64)

Ĩn = (A2
n − Ã2

n)vn, K̃n = (
∑
m∈Z

e−κ |m−n|(A2
m − Ã2

m)vn,

L̃n =
∑

m∈Z\{n}
(Am vm)An −

∑
m∈Z\{n}

( Ãm vm) Ãn, (2.65)

∀n ∈ Z. Then, arguing as in (2.61)∑
n∈Z

| Ĩn|2 ≤ 2(‖A‖2 + ‖ Ã‖2)‖A − Ã‖2‖v‖2. (2.66)

Similarly

|K̃n| ≤
∑
m∈Z

e−κ |m−n||A2
m − Ã2

m‖vn|, (2.67)

so that arguing again as in (2.61) we have∑
n∈Z

|K̃n|2 ≤ 2(‖A‖2 + ‖ Ã‖2)‖A − Ã‖2‖v‖2. (2.68)

Also,

|L̃n| ≤ |
∑

m∈Z\{n}
(Am − Ãm)vm||An| + |

∑
m∈Z\{n}

Ãm vm||An − Ãn|

≤ ‖A − Ã‖‖v‖|An| + ‖ Ã‖‖v‖|An − Ãn|. (2.69)

Therefore∑
n∈Z

|L̃n|2 ≤ (‖A‖2 + ‖ Ã‖2)‖A − Ã‖2‖v‖2. (2.70)

Combining (2.66), (2.68), (2.70),

‖w‖2
X =

∑
n∈Z

|wn|2 + |w+|2 ≤ β̃2‖v‖2, (2.71)

where
β̃ ≤ |(δ − δ̃|‖�‖X,X + |ω − ω̃|
+ 132(|γ || tanh

κ

2
|(‖A‖ + ‖ Ã‖)1/2 + 1)‖A − Ã‖ (2.72)

Thus β → 0 as (x, y) → (x0, y0), as required. �
3. Numerical examples of breathers and their stability

We now examine two types of examples of breathers, one-peak 
breathers, and shelf-shaped breathers. In the first case we show 
evidence for the existence of internal modes. In the second case 
we exhibit the property of amplitude increase at interfaces. Both 
features are a consequence of the nonlocal nonlinearity.

In what follows we consider (2.1) with γ = −1. δ negative/pos-
itive correspond the “focusing/defocusing” sign combinations re-
spectively.

To study the relative stability of a breather solution we 
write (2.1) in the variables v defined by u = e−iωt v . Hamilton’s 
equation (2.2) then becomes

v̇n = −i
∂ Hω

∂v∗
n

, n ∈ I, with Hω = H − ωP . (3.1)

The index set I here is Z. Breather solutions u = e−iωt A of (2.1)
correspond to fixed points A of (3.1). This also implies that points 
eiθ A, θ ∈ R, are also fixed points of (3.1).

Let z = [q, p]T , with zn = [qn, pn]T , qn = Revn , pn = Imvn , n ∈ I . 
Then (3.1) is also written as

ż = J∇hω, with hω = 1

2
Hω, (3.2)

and ( J z)n = −[pn, qn]T , i.e. J is the standard symplectic operator 
in X . The linearization at a fixed point A of (3.1) is

ż = JHz, with H = ∇2hω(A), (3.3)

i.e. H is the Hessian of hω at A (the dependence of H on ω is 
suppressed from the notation).

In the case of real breather An ∈ R, ∀n ∈ I , (3.3) is equivalent 
to the quadratic Hamiltonian system

ż = J∇h, with h = 1

2
〈p, L+ p〉 + 1

2
〈q, L−q〉, (3.4)

where 〈·,·〉 the standard inner product in l2(Z; R), and L+ , L− are 
linear operators defined as follows. First define the linear operators 
A, M : X → X by

A(n,k) = tanh
κ

2
(
∑
m∈Z

e−κ |m−n| A2
m)δn,k, n, κ ∈ I, (3.5)

M(n,k) = tanh
κ

2
e−κ |m−k| Ak An, n,k ∈ I, (3.6)

with δn,k the Kronecker delta. Then

L− = −ωI − δ� + 2A, L+ = −ωI − δ� + 2A+ 4M. (3.7)

In the case where X is l2(Z; C), and A ∈ X , the symmetric operators 
L+ , L− are bounded.

Numerical calculations use a finite domain with N sites. The 
equations are the same, with I = {1, . . . , N}, and X = CN . The def-
inition of � at the sites 1, N is as in [11], and is equivalent to 
imposing the discrete analogue of Dirichlet boundary conditions.

In Figs. 1a, 2a we show two breather solutions with κ = 0.5, 
κ = 0.25 respectively. In both cases δ = −0.5, γ = −1 (focusing 
case). Figs. 1b, 2b show the respective spectra of JH. The eigenval-
ues come in pairs ±iλ, λ real, indicating linear stability. The corre-
sponding Hessian H has one zero eigenvalue, one positive eigen-
value, and all remaining eigenvalues are negative. We also have 
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Fig. 1a. |An| vs. site number n for a 1-peak breather that is strongly localized at 
central site n = 33. The number of sites is N = 65, while κ = 0.5, δ = −0.5, γ = −1
(focusing case). The power is c = 32.0. The computed frequency is ω = 14.6749972.

Fig. 1b. Spectrum of JH around breather of Fig. 1a. Eigenvalues come in pairs ±iλ, 
indicating linear stability. Closer inspection suggests 12 pairs of isolated (point) 
eigenvalues ±iλ, and a remaining set of closely spaced eigenvalues thought to 
represent continuous spectrum for the infinite problem. The eigenvalues in the con-
tinuous band have positive real parts in the interval [14.6799965, 16.6643367].

evidence that P ′(ω) > 0, where the derivative is approximated by 
computing breather solutions with nearby powers. By [7], applied 
to local maxima (i.e. with signs suitably reversed), these breathers 
are expected to be local maxima of the Hamiltonian H on the hy-
persphere P = c, and therefore orbitally stable.

The interesting observation is that Figs. 1b, 2b suggest the exis-
tence of both discrete and continuous spectrum for JH of the infi-
nite lattice problem. In the case of the example of Fig. 1, obtained 
for N = 65, closer inspection of the eigenvalues of JH with posi-
tive imaginary part suggests there are 12 eigenvalues iλ j (counted 
with multiplicity) with λ j ∈ [6.02074736, 14.5734663], and that 
the remaining eigenvalues are more densely spaced, and have 
imaginary part contained in the interval [14.6752636, 16.674649]. 
The distinction between the first 12 eigenvalues and the remain-
ing ones is becoming clearer as we increase the number of sites, 
e.g. from N = 65 up to N = 523. We obtain the same breather 
solution An (in the common lattice points, up to double preci-
sion) and frequency ω, and the same 12 eigenvalues iλ j (counted 
with multiplicity) in the interval λ j ∈ [6.02074736, 14.5734663], 
while the remaining eigenvalues become denser in an interval 
Fig. 1c. qn vs. n, q-component of real part of eigenvectors of JH corresponding 
to eigenvalues ±iλ1 = ±i6.02074736 (“mode 1”, odd), and ±iλ2 = ±i6.07033363
(“mode 2”, even) respectively. These are the nonzero eigenvalues that are nearest to 
the origin.

Fig. 1d. qn vs. n, q-component of real part of eigenvectors of JH corresponding to 
eigenvalues ±iλ11 = ±i14.5734663 (“mode 11”, even), and ±iλ12 = ±i14.5734663
(“mode 12”, odd). These are the highest frequency internal modes.

Fig. 1e. Dispersion relation λk vs. k. The index k enumerates the frequencies λk > 0
of the continuous spectrum of JH, from smaller to larger. The breather is that of 
Fig. 1a, computed using N = 523 sites.
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Fig. 2a. |An| vs. site number n for a 1-peak breather that is strongly localized at cen-
tral site n = 33. The number of sites is N = 65, while κ = 0.25, δ = −0.5, γ = −1
(focusing case). The power is c = 32.0. The computed frequency is ω = 6.97912841.

Fig. 2b. Spectrum of JH around breather of Fig. 2a. Eigenvalues come in pairs ±iλ, 
indicating linear stability. Closer inspection suggests 20 pairs of isolated (point) 
eigenvalues ±iλ, and a remaining set of closely spaced eigenvalues representing 
continuous spectrum for the infinite problem. The eigenvalues in the continuous 
band have positive real parts in the interval [6.98978871, 8.94364354].

that varies slightly, and appears to approach [ω, ω + 4δ], e.g. 
is [14.675066, 16.6749183] for N = 523. Thus we believe that 
first 12 eigenvalues in the positive imaginary axis approximate a 
point component of the spectrum and represent “internal modes”, 
while the remaining eigenvalues represent continuous spectrum. 
In Fig. 2b we indicate a similar situation for a more nonlocal (i.e. 
smaller κ ) breather. The spectrum is closer to the origin, and there 
is evidence for 20 internal modes.

We also observe that the internal modes may have considerable 
amplitude away from the peak. Fig. 1c shows the lowest frequency 
internal modes for the breather of Fig. 1a. Note the maxima at the 
sites adjacent to the central peak of the breather. By the notation 
in (3.2) eigenvectors of JH have q-, and p-components, and are 
generally complex. Maxima refer to maxima of real or imaginary 
parts of the q-, or p-components. The internal mode eigenvalues 
in the positive imaginary axis come in pairs iλ2 j−1, iλ2 j ∈ iR, j =
1, 2, . . ., that correspond to one odd and one even eigenvector. The 
values λ2 j−1, λ2 j are too close to see in Fig. 1b, and become closer 
as j increases. Modes corresponding to λ j with increasing j gener-
ally have maxima that are further from the origin; this is indicated 
Fig. 2c. qn vs. n, q-component of real part of eigenvectors of JH corresponding 
to eigenvalues ±iλ1 = ±i1.33223569 (“mode 1”, odd), and ±iλ2 = ±i1.59696824
(“mode 2”, even) respectively. These are the nonzero eigenvalues that are nearest to 
the origin.

Fig. 2d. qn vs. n, q-component of real part of eigenvectors of JH corresponding to 
eigenvalues ±iλ11 = ±i6.94179627 (“mode 19”, odd), and ±iλ12 = ±i6.94179627
(“mode 20”, even). These are the highest frequency internal modes.

Fig. 2e. Dispersion relation Imλk vs. k, where k enumerates the frequencies λk in the 
continuous spectrum of JH, from smaller to larger. The breather is that of Fig. 2a, 
computed using N = 523 sites.
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Fig. 3a. An vs. site number n for a shelf-like breather. The number of sites is N =
261, while κ = 0.8, γ = −1, δ = 0.05 (defocusing case). The power is c = 31.0.

Fig. 3b. Spectrum of JH around breather of Fig. 3a, indicating linear stability.

in Fig. 1d, where we show the eigenvectors corresponding to the 
highest frequency internal modes. In Fig. 2d we see that the inter-
nal modes extend to about 10–15 sites from the site of the peak.

Figs. 1e, 2e show the continuous band “dispersion” relation for 
the breathers of Figs. 1, 2 respectively, that is the positive frequen-
cies λk of the continuous spectrum versus an index k that enu-
merates them, from smaller to larger. Note that the corresponding 
eigenvalues on the positive imaginary axis are double, and we only 
show one representative from each pair. The shape of the dis-
persion is similar to that of the free discrete equation u̇ = iδ�u, 
shifted by ω, the frequency of the breather.

The presence of the internal modes may be heuristically under-
stood by examining the one-peak breather solution of the δ = 0
problem. For γ = −1 this solution has the amplitude A0 = A ∈ R, 
and An = 0, ∀n ∈ Z \ {0}, and frequency ω = 2 tanh(κ/2)A2. Also, 
A2 = c, where c is the power. By (3.5), (3.6), (3.7) the L+ , L− for 
this solution reduce to

L+(n,m) = (−ω + 2 tanh
κ

2
e−κ |n| A2 + tanh

κ

2
A2δ0,n)δn,m, (3.8)

L−(n,m) = (−ω + 2 tanh
κ

2
e−κ |n| A2)δn,m, (3.9)

n, m ∈ Z. Thus L+ , L− are diagonal, and JH is block diagonal with 
2 × 2 blocks J2Hn , n ∈ Z, with J2 the 2 × 2 symplectic matrix, and 
Fig. 4a. An vs. site number n for a shelf-like breather. The number of sites is N =
261, while κ = 0.8, δ = −0.05, γ = −1 (focusing case). The power is c = 31.0.

Fig. 4b. Spectrum of JH around breather of Fig. 4a, indicating linear instability.

Hn diagonal with diag(Hn) = (L+(n, n), L−(n, n)). By (3.8)

L+(n,n) = L−(n,n) = ω(e−κ |n| − 1), ∀n ∈ Z \ {0},
L+(0,0) = tanh

κ

2
A2, L+(0,0) = 0, (3.10)

and we see that the spectrum of JH consists of a double zero 
eigenvalue from the block JH0, and the eigenvalues

±iλn, λn = ω(1 − e−κ |n|), n ∈ Z \ {0}, (3.11)

corresponding to the respective blocks JHn , n ∈ Z \ {0}, i.e. the 
nonzero eigenvalues start at ±iω(1 −e−κ ), and accumulate to ±iω
as |n| increases, at a rate that is slower for smaller κ (stronger 
nonlocality). Also JH−n , JHn have the same eigenvalues.

The heuristic picture is then that the internal modes observed 
for δ �= 0 likely belong to eigenspaces that are continued from the 
eigenspaces of the ±iλn , ±iλ−n eigenvalues corresponding to the 
smallest |n|. The remaining higher |n| subspaces (|n| → ∞) may 
not be preserved for δ �= 0. The continuous spectrum is also likely 
obtained from the part −ωI −δ� of the L+ , L− , and is not affected 
by A, M.

Figs. 3, 4 show examples of shelf-shaped breathers that are ex-
amples of the solutions expected from the continuation for the 
δ = 0 solutions in Theorem 2.4. The breathers shown correspond to 
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a configuration with 31 consecutive peaks at the δ = 0 limit. The 
main feature here is the amplitude peak at the interface, clearly 
visible for the values δ = ±0.05 we use. This effect is seen in more 
examples, with more general profiles at the sites with nontrivial 
amplitude at δ = 0. In addition, there is a less pronounced peak 
at the interface between regions where the nontrivial amplitudes 
change sign.

Figs. 3b, 4b suggest linear stability and linear instability for the 
corresponding breathers. There is also evidence for bands, start-
ing at ±iω, and of internal modes. Internal modes are also present 
around multi-peak breathers of the cubic DNLS, but here the num-
ber of internal modes is larger than 2 × k − 2, k the number of 
peaks, seen in the cubic DNLS [16].

4. Discussion

We have presented a study of localized solutions of breather 
type in a discrete NLS with a nonlocal cubic nonlinearity. Our 
small intersite coupling results show several similarities with the 
breather solutions of the discrete NLS with power nonlinearity. 
In the present problem we also have a regime where only the 
linear coupling is small. In that case the nonlocal nonlinear in-
teraction leads to profiles whose more remarkable feature seems 
to be the presence of amplitude maxima near interfaces. A ques-
tion for further work is the classification of real solutions for the 
regime of small linear coupling. A more general question is the 
presence of breathers that are not real (modulo a global phase), 
see [13,16] for the cubic NLS with small linear intersite coupling. 
Related questions are applicable to other nonlocal periodic media, 
see e.g. [3,8].

Another interesting effect we report is the apparent presence 
of internal modes for the one-peak breather. This solution is ex-
pected to be a constrained extremum of the Hamiltonian, as in 
the discrete NLS with cubic power nonlinearity, see [19]. A study 
of properties of these solutions is currently in progress. A further 
problem is the analysis of the linearized problem, and the effect of 
the expected internal modes on the dynamics around the breather. 
Preliminary numerical work suggests long-lived interactions be-
tween the internal modes.
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