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Abstract
We study a 2D system that couples a Schrödinger evolution equation  to a 
nonlinear elliptic equation and models the propagation of a laser beam in a 
nematic liquid crystal. The nonlinear elliptic equation describes the response 
of the director angle to the laser beam electric field. We obtain results on well-
posedness and solitary wave solutions of this system, generalizing results for 
a well-studied simpler system with a linear elliptic equation for the director 
field. The analysis of the nonlinear elliptic problem shows the existence of an 
isolated global branch of solutions with director angles that remain bounded 
for arbitrary electric field. The results on the director equation are also used 
to show local and global existence, as well as decay for initial conditions 
with sufficiently small L2−norm. For sufficiently large L2−norm we show 
the existence of energy minimizing optical solitons with radial, positive and 
monotone profiles.
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1. Introduction

We present results on the well-posedness and soliton solutions of the coupled nonlinear 
Schrödinger (NLS) equation

i∂zu +
1
2
∇2u + u sin(2θ) = 0, (1.1a)

ν∇2θ − q sin(2θ) = −2|u|2 cos(2θ), (1.1b)

see [21], where u, and θ depend on the ‘optical axis’ coordinate z ∈ R, and the ‘transverse 
coordinates’ (x, y) ∈ R2. ∇2 = ∂2

x + ∂2
y  is the Laplacian in the transverse directions, and ν, q 

are positive constants.
System (1.1) models the interaction between the complex amplitude u of the electric field 

of a polarized laser beam propagating through a nematic liquid crystal sample, and the direc-
tor field angle θ describing the macroscopic orientation of the molecules of the liquid crystal. 
The variable z plays the role of time, i.e. we are interested in the solutions of (1.1) given 
u(x, y, z), θ(x, y, z) at z  =  0. The experimental set-up described by (1.1) was studied exten-
sively by Assanto and collaborators [4, 21, 22], and is considered one of the first and still few 
physical systems shown experimentally to support 2-dimensional stable optical solitons [23].

Our first goal is to extend results on the simpler model

i∂zu +
1
2
∇2u + 2θu = 0, (1.2a)

ν∇2θ − 2qθ = −2|u|2, (1.2b)

obtained from (1.1) using the small angle approximation sin θ ≈ θ, cos θ ≈ 1. The director 
angle equation (1.2) has a unique solution θ = G ∗ |u|2, where G(x) = 2ν−1 N0(

√
2q/ν|x|) 

and N0 is the modified Bessel function, so that (1.2) can be also written as a NLS equa-
tion with a Hartree-type nonlinearity

i∂zu +
1
2
∇2u + 2

(
G ∗ |u|2

)
u = 0. (1.3)

Equation (1.2) capture the physical effect that a localized electric field u can produce a defor-
mation of the director angle θ at longer distances. As was recognized by several authors [14, 
24], this nonlocal effect regularizes the dynamics of the electric field and avoids the finite-time 
blow-up seen in the cubic power NLS in two dimensions, see [25]. Specifically, the initial 
value problem for (1.3) is well-posed [3, 10], and the equation has an energy minimizing soli-
ton solution above a power threshold [20]. Other analytical predictions based on this model 
have been compared to experimental data and can explain stabilization effects for more com-
plicated structures such as vortices and multisolitons, see e.g. [9, 19]. Variants of (1.3) have 
been also used to describe optical solitons in other nonlocal media, often referred to as thermal 
media [2, 13, 16, 26]. Well posedness for related coupled Schrödinger–Poisson problems have 
been studied by many authors, see [5–8, 17].

The new feature of (1.1) is the nonlinear equation for the director field, and our first result is 
that given u ∈ L4(R2) ∩ L∞(R2), equation (1.1b) has a unique solution θ(|u|2) that belongs to 
H2(R2) and satisfies θ(x) ∈ [0,π/4), for all x ∈ R2, see proposition 3.1. This is a ‘saturation’ 
effect for the angle. The proof of proposition 3.1 uses fixed point and continuation arguments, 
see lemma 3.4, and also relies on identifying in (1.1b) an analogue of the smoothing operator 
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(−∇2 + 1)−1 of (1.2). The range of θ is deduced from (1.1b) by considering the signs of the 
trigonometric nonlinearities, see lemmas 3.1 and 3.2.

The results on the director field equation are then used to show local and global existence 
results for initial conditions (u0, θ(|u0|2)) with u0 ∈ H1(R2), see theorems 4.1 and 4.2 respec-
tively for precise statements. The global existence uses the conservation of the L2−norm of u, 
and of the Hamiltonian H of the coupled system, where

H(u, θ) =
1
4

∫

R2

(
|∇u|2 + ν|∇θ|2 − 2|u|2 sin(2θ) + q(1 − cos(2θ))

)
dx.

 (1.4)
The formal functional derivatives of H are

∂uH =− 1
2
∇2u − u sin(2θ),

∂θH =− ν

2
∇2θ − |u|2 cos(2θ) + q

2
sin(2θ),

thus

dH
dz

(u, θ) = 〈∂uH, ∂zu〉+ 〈∂θH, ∂zθ〉

= 〈i∂zu, ∂zu〉 = 0,

with 〈·, ·〉 the L2 inner product. The above also imply a formal Hamiltonian structure for (1.1). 
By (1.4) we have

‖∇u‖2
L2 + ‖u‖2

L2 � 4H(u, θ) + 3‖u‖2
L2 (1.5)

and therefore ‖u‖H1 should remain bounded for all times.
We also show results on the existence of soliton solutions. The solutions we obtain are min-

imizers of the Hamiltonian over configurations (u, θ) with u ∈ H1(R2) and fixed L2  −  norm. 
The existence statement, proposition 5.3, assumes that the L2  −  norm of u is above cer-
tain threshold. We have also used Strichartz estimates to show that if the initial condition 
u0 ∈ H1(R2) has a sufficiently small L2  −  norm, then the L4  −  norm of the solution u(t) in 
time must eventually decay to zero, see proposition 4.3. This implies the nonexistence of soli-
tary wave solutions with small L2  −  norm. Our results on energy minimizing soliton solutions 
are similar to those on (1.3), see [20]. Here, in addition to dealing with the nonlinear elliptic 
equation and generalizing the Hamiltonian structure, we also simplify the minimization argu-
ment by using symmetrization before looking for the minimum. We then use the direct method 
to show convergence of a subsequence of a minimizing sequence of radial configurations, see 
proposition 5.3.

The result that the angle θ is bounded by π/4 is interesting from the physical point of view. 
It suggests a saturation effect for optical solitons in liquid crystals that seems not to have 
received much attention. Saturation (and possibly smoothing) occur in (1.1) even for ν = 0. 
We include an Appendix where we outline a formal derivation of (1.1) and explain the geom-
etry of the experiment modeled by (1.1), using [11, 12, 18], and [22]. We see that the director 
field angle with the z  −  axis is θ0 + θ(x, y, z), where θ0  is a constant ‘pre-tilt’ angle induced 
by an external ‘bias’ electric field E (θ0  and E are absorbed by the constants of (1.1b)). The 
assumption q  >  0 in (1.1b) is equivalent to θ0 > π/4. Then, our bound is consistent with 
θ0 + θ < π/2, i.e. the statement that the director angle always points forward, in the direction 
of the propagation of the laser beam. The Appendix shows that model (1.1) is also derived 
under a small angle assumption. The saturation effect thus requires further study, using some 
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of the more general models in the Appendix. On the other hand, (1.1) seems to be the simplest 
model describing saturation effects in liquid crystal optics.

The paper is organized as follows. In section 2 we present some preliminary results. In sec-
tion 3 we show existence, unique continuation, and regularity for the director equation (1.1b). 
The results are summarized in proposition 3.1. In section 4 we show local and global well-
posedness for the initial value problem (1.1). We also show decay for small initial conditions, 
see proposition 4.3. In section 4 we show the existence of constrained minimizers for the 
Hamiltonian, implying the existence of radially symmetric optical solitons, see proposition 
5.3. In appendix A we give a formal derivation of (1.1).

2. Notation and preliminary results

Let N : R2 × R → R satisfy the Carathéodory conditions

 1. N(., θ) is measurable for each θ ∈ R,
 2. N(x, .) is continuous in R  for almost all x ∈ R2; 

and the inequality |N(x, θ)| � C(|θ|+ ϕ(x)), with ϕ ∈ L2(R2). Then the Nemytskii operator 
defined as θ �→ N(x, θ) is a continuous bounded map in L2(R2).

Given v ∈ L2(R2), we define v+ = max (v, 0) and v− = max (−v, 0). Then  
‖v±‖2

L2 = ±〈v, v±〉, 〈v+, v−〉 = 0 and ‖v‖2
L2 = ‖v+‖2

L2 + ‖v−‖2
L2. If v ∈ H1(R2), then  

v± ∈ H1(R2). Moreover ‖∇v±‖2
L2 = ±〈∇v,∇v±〉, 〈∇v+,∇v−〉 = 0 and ‖∇v‖2

L2 = ‖∇v+‖2
L2+ 

‖∇v−‖2
L2.

Let {W(z) : z ∈ R} be the unitary group in L2(R2) generated by i
2∇

2. W(z) is an isometric 
isomorphism in Hs(R2), for any s ∈ R. The integral solution of the inhomogeneous problem

{
i∂zu + 1

2∇
2u + f = 0,

u(0) = u0,

is written as u  =  h  +  g, where

h(z) = W(z)u0, g(z) = i
∫ z

0
W(z − z′) f (z′)dz′. (2.1)

Let 1 < r � 2 � p < ∞, q = 2p/( p − 2) and γ = 2r/(3r − 2). From the Strichartz estimates 
( [3]) we can see that there exist Cp, Cp,r > 0 such that

‖h‖Lq(I,L p) � Cp‖u0‖L2 , (2.2)

‖g‖Lq(I,L p) � Cp,r‖f‖Lγ(I,Lr), (2.3)

for any interval I ⊂ R.
We also recall the well-known Gagliardo–Nirenberg inequalities

‖v‖Lq � Cp,q,r‖∇v‖αL p‖v‖1−α
Lr , (2.4)

where 1
q − 1

r =
(

1
p − 1

2 − 1
r

)
α and 0 � α � 1, 1 � p, q, r � ∞. Then, taking q = ∞, p  =  4, 

r  =  2 and α = 2/3, we have that

‖v‖L∞ � C‖v‖1/3
L2 ‖∇v‖2/3

L4 . (2.5)

Another case is q  =  4, p  =  2, r  =  2 and α = 1/2

J P Borgna et alNonlinearity 31 (2018) 1535
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‖v‖L4 � C‖v‖1/2
L2 ‖∇v‖1/2

L2 . (2.6)

Given ζ > 0, we will consider the Banach space Yζ  defined by

Yζ =
{

u ∈ C([0, ζ], H1(R2)) : ∇u ∈ L4([0, ζ], L4(R2))
}

, (2.7)

with the norm

‖u‖Yζ
= ‖u‖C([0,ζ],H1(R2)) + ‖∇u‖L4([0,ζ],L4(R2)). (2.8)

Lemma 2.1. Let V ∈ L∞(R2), with V � 0 and lim inf |x|→∞ V(x) � a > 0. If 
Q : H1(R2)× H1(R2) → C is given by

Q(ψ,ϕ) =
∫

R2
(∇ψ∇ϕ∗ + Vψ ϕ∗) dx,

then there exist C1, C2 > 0 such that C1‖ψ‖2
H1 � Q(ψ,ψ) � C2‖ψ‖2

H1.

Proof. It is clear that Q(ψ,ψ) � C2‖ψ‖2
H1, where C2 = max {1, ‖V‖L∞}.

Suppose, contrary to our claim, that there exists {ψn}n∈N ⊂ H1(R2) such that ‖ψn‖H1 = 1 
and limn→∞ Q(ψn,ψn) = 0. Let R  >  0 such that V(x) � a/2 for |x| > R, given ε > 0 there 
exists n0 such that

∫

|x|>R
|ψn|2dx �

2
a

∫

|x|>R
V|ψn|2dx �

2
a

Q(ψn,ψn) < ε.

From theorem 2.32 in [1], there exists a subsequence of {ψn}n∈N such that ψn → ψ in L2(R2) 
and, since ‖∇ψn‖2

L2 � Q(ψn,ψn) → 0, ψ ∈ H1(R2) with ∇ψ = 0. Since ψ is a constant  
function, we have ψ = 0. But,

‖ψ‖2
L2 = lim

n→∞
‖ψn‖2

L2 = lim
n→∞

‖ψn‖2
H1 − ‖∇ψn‖2

L2 = 1,

a contradiction. □ 

Lemma 2.2. Let V be as in the previous lemma. Then for any f ∈ L2(R2), there  
exists a unique solution ψ ∈ H2(R2) of −∇2ψ + Vψ = f . Moreover, there exists a  
constant K = K(V) > 0 such that ‖ψ‖H2 � K‖f‖L2.

Proof. From lemma 2.1, Q is a symmetric bilinear form which defines an inner product 
equivalent to the usual one in H1. Let μ be the continuous linear functional in H1(R2) given 
by µ(ϕ) = 〈f ,ϕ〉L2. By the Riesz representation theorem, there exists a unique ψ ∈ H1(R2) 
such that Q(ψ,ϕ) = µ(ϕ), which implies that ψ is a weak solution of −∇2ψ + Vψ = f , and 
‖ψ‖H1 � C‖f‖L2. Moreover, ∇2ψ ∈ L2(R2) and

∥∥∇2ψ
∥∥

L2 � ‖Vψ‖L2 + ‖ f‖L2 � C(1 + ‖V‖L∞)‖ f‖L2 ,

which implies ‖ψ‖H2 � K‖ f‖L2. □ 

J P Borgna et alNonlinearity 31 (2018) 1535
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3. Solution of the director angle equation

The nonlinear elliptic equation (1.1b) is written as

−∇2θ = N(u, θ) (3.1)

where N is given by

N(u, θ) = − q
ν
sin(2θ) +

2
ν
|u|2 cos(2θ). (3.2)

We see that N(u, .) is decreasing on the interval [0,π/4] and verifies

N(u, θ) � − 4q
ν π

θ +
2
ν
|u|2, (3.3)

for all θ ∈ [0,π/4], and u ∈ C. The function N(u(x), θ), x ∈ R2, satisfies conditions 
(1) and (2) and, since |N(u, θ)| � C(|θ|+ |u|2), N defines a Nemytskii operator for any 
u ∈ L4(R2). In the remainder of this section we will assume that u ∈ L4(R2) and we will write 
N(u(x), θ) = N(x, θ) when no confusion can arise.

Lemma 3.1. Given u ∈ L4(R2), equation  (1.1b) has at most one solution θ ∈ H2(R2)  
satisfying 0 � θ(x) � π/4 for all x ∈ R2.

Proof. Let θ1, θ2 ∈ H2(R2) be solutions of (1.1b) taking values in the interval [0,π/4].  
These solutions are also in C0(R2) by the Sobolev inequalities. By (3.2) their difference satisfies

−∇2(θ1 − θ2) = N(x, θ1)− N(x, θ2), (3.4)

and since N(x, .) is decreasing in [0,π/4], we also have

(N(x, θ1)− N(x, θ2))(θ1 − θ2)
+ � 0,

a.e. in R2. Multiplying (3.4) by (θ1 − θ2)
+ and integrating we therefore have

∥∥∥∇(θ1 − θ2)
+
∥∥∥

2

L2
� 0.

Interchanging θ1 and θ2 , we similarly have 
∥∥∥∇(θ2 − θ1)

+
∥∥∥

2

L2
� 0. From the decomposition 

∇(θ1 − θ2) = ∇(θ1 − θ2)
+ −∇(θ2 − θ1)

+, it follows that ∇(θ1 − θ2) = 0 a.e. in R2. Since 
θ1, θ2  are continuous and decay at infinity, we obtain θ1 ≡ θ2. □ 

The main result of this section is proposition 3.1 on the solution θ(u) of (3.1) and (3.2). 
The proof is a global continuation argument from the trivial solution θ ≡ 0, u ≡ 0. The fol-
lowing lemma 3.2 and its corollary 3.1 allow us to apply the abstract continuation lemma 3.4 
to any u. Specifically, assuming that we have a solution θ(u), u  =  u0, with range in [0,π/4) 
we see in proposition 3.1 that we can find a nearby H2(R2) solution θ(u), u near u0 in L4(R2). 
Lemma 3.2 then implies that θ(u) remains in the interval [0,π/4), we can therefore continue 
the solution for u in a neighborhood of any u0. Lemma 3.2 is also the main step in proving the 
saturation effect. By the above this saturation is in fact crucial for showing that we can solve 
the director equation for any u.

J P Borgna et alNonlinearity 31 (2018) 1535
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Lemma 3.2. Consider equation (1.1b) with u ∈ L4(R2) and assume that it has a solution 
corresponding θ ∈ H2(R2) that also satisfies −π/4 � θ(x) � π/2, for all x ∈ R2. Such θ 
must then satisfy 0 � θ(x) � π/4, for all x ∈ R2.

Proof. By (3.2), −π/4 � θ � 0 implies N(x, θ) � 0, therefore N(x, θ)θ− � 0 a.e. in R2. 

Multiplying (3.1) by θ−, integrating and using ∇θ · ∇θ− = −|∇θ−|2, we get

−
∫

R2

∣∣∇θ−
∣∣2 dx =

∫

R2
N(x, θ)θ− dx � 0.

It follows that θ− ≡ 0.

For θ ∈ [π/4,π/2], we have N(u, θ) � 0 and therefore N(x, θ)(θ − π/4)+ � 0 
a.e. in R2. Multiplying (3.1) by (θ − π/4)+, integrating and using 

∇(θ − π/4) · ∇(θ − π/4)+ =
∣∣∣∇(θ − π/4)+

∣∣∣
2
, we similarly obtain that (θ − π/4)+ is a 

constant and therefore (θ − π/4)+ ≡ 0. □ 

Corollary 3.1. Let θ be as in lemma 3.2, with u ∈ L4(R2) ∩ L∞(R2). Then 
0 � θ(x) � θmax < π/4, for all x ∈ R2, where

θmax =
1
2
arctan(2‖u‖2

L∞/q). (3.5)

Proof. Consider u ∈ L4(R2) ∩ L∞(R2). Assume θ is a solution of (3.1), and define θmax as in 
(3.5). We need to show that θ(x) � θmax , for all x ∈ R2. By (3.2), N(u(x), θ(x)) � 0 is equiva-
lent to 1/2 arctan(2|u(x)|2/q) � θ(x). Thus, if θmax � θ(x) � π/4 then N(u(x), θ(x)) � 0. 
Therefore N(x, θ)(θ − θmax)

+ � 0 a.e. in R2. Multiplying (3.1) by (θ − θmax)
+ and arguing 

as in lemma 3.2, we see that (θ − θmax)
+ ≡ 0. □ 

Lemma 3.3. There exists a constant Cq,ν > 0 such that if θ ∈ H2(R2) is a solution of (1.1b) 
and satisfies 0 � θ(x) � π/4, for all x ∈ R2, then ‖θ‖H2 � Cq,ν‖u‖2

L4 .

Proof. Multiplying (1.1b) by θ, integrating, and using the assumption θ ∈ [0,π/4] we obtain

‖∇θ‖2
L2 � − 4q

νπ
‖θ‖2

L2 +
2
ν

∫

R2
|u|2 θ dx.

Using Hölder’s inequality, this implies

‖∇θ‖2
L2 +

2q
νπ

‖θ‖2
L2 �

π

2νq
‖u‖4

L4 . (3.6)

By (3.1) and (3.2) we also have

∥∥∇2θ
∥∥

L2 �
4q
νπ

‖θ‖L2 +
2
ν
‖u‖2

L4 �
4
ν
‖u‖2

L4 . (3.7)

The lemma follows from (3.6) and (3.7). □ 
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In order to solve (1.1b) we use the following definition. Let X be a Banach space, and 
consider a map F : X × H2(R2) → L2(R2) that satisfies F(u, 0) = 0 and is continuous in a 
neighborhood of (u, 0). Then we will consider the property that for any ε > 0, there exists a 
neighborhood V ⊂ X × H2(R2) of (u, 0) for which

‖F(w,ψ1)− F(w,ψ2)‖L2 � ε‖ψ1 − ψ2‖H2 , (3.8)

for all (w,ψ1), (w,ψ2) ∈ V .
Property (3.8) combines Lipschitz continuity and superlinearity for the second component 

of F near (u, 0). In lemma 3.4 we will see that (3.8) implies the existence of a unique solution 
ψ(w) of −∇2ψ + Vψ = F(w,ψ) near (u, 0), V as in lemma 2.2. Continuity of F in the first 
component makes ψ continuous in w. This setup will be then used to solve (1.1b).

Lemma 3.4. Let X be a Banach space and consider a map F : X × H2(R2) → L2(R2). 
Assume that V satisfies the conditions of lemma 2.2 and that F is continuous in a neighbor-
hood of (u, 0) and satisfies (3.8) at (u, 0). Then there exists a neighborhood U ⊂ X  of u and 
δ > 0 such that for any w ∈ U  the equation −∇2ψ + Vψ = F(w,ψ) has a unique solution 
ψ ∈ H2

(
R2

)
 with ‖ψ‖H2 < δ. Furthermore, the map w �→ ψ from X to H2(R2) is continuous 

in U .

Proof. Let K  >  0 be the constant of lemma 2.2, and let V  be a neighborhood of (u, 0) for 
which F satisfies (3.8) for any ε satisfying 0 < ε < 1/(2K). Then we can choose δ, r > 0 such 
that BX(u, δ)× BH2(0, r) ⊂ V  and ‖F(w, 0)‖L2 < r/(2K) if ‖w − u‖X � δ. Furthermore, for 
any ‖ψ‖H2 � r  we have

‖F(w,ψ)‖L2 � ‖F(w, 0)‖L2 + ‖F(w,ψ)− F(w, 0)‖L2

�
r

2K
+ ε‖ψ‖H2 �

r
K

. (3.9)

For w ∈ X , we define the map Γw : H2(R2) → H2(R2) given by Γw(ψ) = ϕ, where 
ϕ ∈ H2(R2) is the solution of −∇2ϕ+ Vϕ = F(w,ψ). Therefore, lemmas 2.2 and (3.9) im-
ply that if ‖w − u‖X � δ and ‖ψ‖H2 � r  then

‖Γw(ψ)‖H2 = ‖ϕ‖H2 � K‖F(w,ψ)‖L2 � r,

and therefore Γw(BH2(0, r)) ⊂ BH2(0, r). Also, by (3.8) if ψ1,ψ2 ∈ BH2(0, r), then

‖F(w,ψ1)− F(w,ψ2)‖L2 � ε‖ψ1 − ψ2‖H2 ,

therefore

‖Γw(ψ1)− Γw(ψ2)‖H2 �K‖F(w,ψ1)− F(w,ψ2)‖L2

�Kε‖ψ1 − ψ2‖H2 �
1
2
‖ψ1 − ψ2‖H2 .

Thus Γw is a contraction mapping in BH2(0, r) and it admits a unique fixed-point ψ, i.e. there 
exists a unique ψ ∈ BH2(0, r) satisfying −∇2ψ + Vψ = F(w,ψ).

Let w0, w ∈ BX(u, δ), ψ0 = Γw0(ψ0) and ψ = Γw(ψ), we can write

−∇2(ψ − ψ0) + V(ψ − ψ0) =F(w,ψ)− F(w,ψ0)

+ F(w,ψ0)− F(w0,ψ0),
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then ‖ψ − ψ0‖H2 � Kε‖ψ − ψ0‖H2 + K‖F(w,ψ0)− F(w0,ψ0)‖L2. Thus,

‖ψ − ψ0‖H2 � 2K‖F(w,ψ0)− F(w0,ψ0)‖L2

and the continuity of w �→ ψ follows from the continuity of F(·,ψ0) near u. □ 

The existence of solutions (1.1b) is shown in proposition 3.1 below, using a continuation 
idea and the setup of lemma 3.4. We first show technical lemmas 3.5 and 3.6 on property (3.8) 
for the nonlinear terms.

Remark 3.1. Suppose F1, F2 : X × H2(R2) → L2(R2) satisfy (3.8) at u. Then for A1, A2 
bounded operators in L2(R2), the map F = A1F1 + A2F2 : X × H2(R2) → L2(R2) is continu-
ous in a neighborhood of (u, 0) and satisfies property (3.8) at (u, 0).

Lemma 3.5. Let α ∈ C1(R), u ∈ L4(R2) and define F : L4(R2)× H2(R2) → L2(R2) by 

F(w,ψ) =
(
|w|2 − |u|2

)
α(ψ). Then F is continuous in a neighborhood of (u, 0) and satisfies 

property (3.8) at (u, 0).

Proof. By |F(w1,ψ)− F(w2,ψ)| � (|w1|+ |w2|)|w1 − w2||α(ψ)|, we have

‖F(w1,ψ)− F(w2,ψ)‖L2 � (‖w1‖L4 + ‖w2‖L4)‖w1 − w2‖L4‖α(ψ)‖L∞ . (3.10)

Also, since α is continuously differentiable, there exists a constant L  >  0 such that 
if |ψ1|, |ψ2| � R, then |α(ψ1)− α(ψ2)| � L|ψ1 − ψ2|. Thus, from the inequality 
‖ψ‖L∞ � C‖ψ‖H2, we have

‖F(w,ψ1)− F(w,ψ2)‖L2 �CL(‖u‖L4 + ‖w‖L4)‖w − u‖L4‖ψ1 − ψ2‖H2

�CL(2‖u‖L4 + δ)δ‖ψ1 − ψ2‖H2 ,
 (3.11)

assuming ‖w − u‖L4 < δ, and ‖ψj‖H2 � R/C. Taking δ small enough, the statement follows 
from (3.10), (3.11). □ 

Lemma 3.6. Let u ∈ L4(R2) and define F : L4(R2)× H2(R2) → L2(R2) by 
F(w,ψ) = G(ψ), and G(ψ) = (h1 + h2|u|2)β(ψ), where h1, h2 ∈ L∞(R2), and β ∈ C1(R) 
with β(0) = 0, β′(0) = 0. Then F(w,ψ) = G(ψ) is continuous in a neighborhood of (u, 0) 
and satisfies (3.8) at (u, 0).

Proof. Properties β(0) = 0, β′(0) = 0 imply that for any η > 0 there exists R  >  0 such that 
|β(ψ1)− β(ψ2)| � η|ψ1 − ψ2| for |ψ1|, |ψ2| � R. Then

|G(ψ1)− G(ψ2)| � η
(
|h1|+ |h2||u|2

)
|ψ1 − ψ2|,

and therefore

‖G(ψ1)− G(ψ2)‖L2 � η
(
‖h1‖L∞ + ‖h2‖L∞‖u‖2

L4

)
‖ψ1 − ψ2‖H2 . (3.12)

This shows property (3.8) at (u, 0). The map F(w,ψ) = G(ψ) is independent of w and the 
statement follows. □ 
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Proposition 3.1. Let u ∈ L4(R2) ∩ L∞(R2), then there exists a unique solution θ ∈ H2(R2) 
of (1.1b) satisfying 0 � θ(x) � π/4, for all x ∈ R2. Furthermore ‖θ‖H2 � C‖u‖2

L4.

Proof. Let U ⊂ L4(R2) ∩ L∞(R2) be the set of functions u for which there exists a solu-
tion θ ∈ H2(R2) of (1.1b), with the property that 0 � θ � π/4 everywhere in R2. We will 
prove that U  is a nonempty open and closed subset of L4(R2) ∩ L∞(R2). Uniqueness and the 
bound on ‖θ‖H2 would then follow from lemmas 3.1 and 3.3 respectively.

The set U  is nonempty since u = 0 ∈ U , with θ = 0. We will prove that U  is closed. Let 
{un}Z+} ∈ U  be a sequence that converges to u in L4(R2). By lemma 3.3 we see that the 
corre sponding sequence of solutions {θn}Z+ of (1.1b) is bounded in H2(R2). Then there exists 
θ ∈ H2(R2) and a subsequence that converges weakly to θ in H2(R2) and therefore converges uni-
formly on compact subsets. Thus for any ϕ ∈ C∞

0 (R2) we have limn→∞ 〈∇2θn,ϕ〉 = 〈∇2θ,ϕ〉 
and that sin(2θn)ϕ, cos(2θn)ϕ converge uniformly to sin(2θ)ϕ, cos(2θ)ϕ respectively. It fol-
lows that θ is a solution of (1.1b) corresponding to u. Since the θn  converge pointwise to θ, we 
have 0 � θ � π/4, which implies U  is closed.

To see that U  is open, it is enough to consider u ∈ U  and the corresponding solution θ 
of (1.1b), and prove that there exists δ > 0 such that u + v ∈ U  if v ∈ L4(R2) ∩ L∞(R2) 
with ‖v‖L4∩L∞ < δ. We write the solution for u  +  v as θ + ψ, then ψ satisfies 
−∇2ψ + Vψ = F(u + v,ψ), where V is the potential given by V = 2q

ν cos(2θ) + 4
ν |u|

2
sin(2θ), 

and

F(w,ψ) =
2
ν

(
|w|2 − |u|2

)
cos(2(θ + ψ))

+

(
q sin(2θ)

ν
− 2

ν
|u|2 cos(2θ)

)
(1 − cos(2ψ))

+

(
q cos(2θ)

ν
+

2
ν
|u|2 sin(2θ)

)
(2ψ − sin(2ψ)).

We can see that V ∈ L∞(R2) and, since 0 � θ � π/4, V � 0. As θ ∈ H2(R2), we also have 

lim
|x|→∞

θ(x) = 0, hence

lim inf
|x|→∞

V(x) �
2q
ν

.

Therefore V verifies the conditions of lemma 2.2. By lemmas 3.5, 3.6 and remark 3.1, we see 
that F is continuous from L4(R2) ∩ L∞(R2)× H2(R2) to L2(R2) and verifies (3.8) at (u, 0). 
Using lemma 3.4, there exists r  >  0 such that if ‖v‖L4 < r then −∇2ψ + Vψ = F(u + v,ψ) 
has a unique solution ψ ∈ H2(R2) with ‖ψ‖H2 � δ. Taking r  >  0 small enough, we can as-
sume |ψ| < π/4 and then −π/4 < θ + ψ < π/2 for all x ∈ R2. Then lemma 3.2 implies that 
0 � θ + ψ � π/4 everywhere R2. Thus U  is open. Since U  closed, open and nonempty, we 
conclude U = L4(R2) ∩ L∞(R2). □ 

Lemma 3.1 shows the existence of a global continuous branch of solutions θ(u) ∈ H2(R2) 
of(1.1b), defined for all u ∈ U = L4(R2) ∩ L∞(R2). The unique continuation argu-
ments above, i.e. lemmas 3.4 and 3.2, imply that any other continuous branch of solutions 
θ̃(u) ∈ H2(R2), u ∈ Ũ ⊂ L4(R2) ∩ L∞(R2), that intersects the branch of lemma 3.1 must 
coincide with it. In particular a branch that includes the origin in its domain must coincide 
with the one described by the lemma above.
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4. Well-posedness of the evolution problem

We now consider the initial value problem for system (1.1), written as

u(z) = W(z)u0 + i
∫ z

0
W(z − z′)u(z′) sin(2θ(z′))dz′,

 (4.1a)

−∇2θ = N(u, θ), (4.1b)

where N(u, θ) = − q
ν sin(2θ) + 2

ν |u|
2
cos(2θ), and W is the unitary group generated by the 

operator i
2∇

2.

Proposition 4.1. The map Θ : H1(R2) ∩ L∞(R2) → H2(R2) defined by Θ(u) = θ, where 
θ is the solution of (4.1b) satisfies

‖Θ(u1)−Θ(u2)‖H2 �Cν,q(‖u1‖H1 , ‖u2‖H1)
(

1 + ‖u1‖2
L∞ + ‖u2‖2

L∞

)

× ‖u1 − u2‖H1 ,
 

(4.2)

and is therefore locally Lipschitz continuous.

Proof. Let u1, u2 ∈ H1(R2) ∩ L∞(R2), with R = max{‖u1‖H1∩L∞ , ‖u2‖H1∩L∞}, and let 
θ1, θ2 ∈ H2(R2) be their respective solutions of (4.1b), as in proposition 3.1. By corollary 3.1, 
we see that 0 � θj(x) � θmax, for all x ∈ R2 and j  =  1,2, where θmax = 1

2 arctan(2R2/q) ∈ 
[0,π/4]. We then have

|sin(2θ1)− sin(2θ2)| �
2q√

4R4 + q2
|θ1 − θ2|, (4.3)

by the mean value theorem. Also, the difference between two solutions of (4.1b) satisfies

−∇2(θ1 − θ2) =− q
ν
(sin(2θ1)− sin(2θ2))

+
2
ν
|u1|2(cos(2θ1)− cos(2θ2)) +

2
ν

(
|u1|2 − |u2|2

)
cos(2θ2),

 
(4.4)

so that multiplying by θ1 − θ2 and integrating by parts, we obtain
∫

R2
|∇(θ1 − θ2)|2dx = − q

ν

∫

R2
(sin(2θ1)− sin(2θ2))(θ1 − θ2)dx

+
2
ν

∫

R2
|u1|2(cos(2θ1)− cos(2θ2))(θ1 − θ2)dx

+
2
ν

∫

R2

(
|u1|2 − |u2|2

)
cos(2θ2)(θ1 − θ2)dx.

 

(4.5)

To estimate the right-hand side of (4.5), we use (4.3), and θj ∈ [0,π/4] to see that

(sin(2θ1)− sin(2θ2))(θ1 − θ2) � 2q
(
4R4 + q2)−1/2

(θ1 − θ2)
2,

thus
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−q
ν

∫

R2
(sin(2θ1)− sin(2θ2))(θ1 − θ2)dx � − 2q2

ν
√

4R4 + q2
‖(θ1 − θ2)‖2

L2 .

 

(4.6)

Also, since cos(2θ) is decreasing in the interval [0,π/4], we see that
∫

R2
|u1|2(cos(2θ1)− cos(2θ2))(θ1 − θ2)dx � 0. (4.7)

To estimate the third integral in (4.5) we use Hölder’s inequality to see that
∫

R2

(
|u1|2 − |u2|2

)
cos(2θ2)(θ1 − θ2)dx � (‖u1‖L4 + ‖u2‖L4)‖u1 − u2‖L4

× ‖θ1 − θ2‖L2 .
 

(4.8)

Letting a = q2/(ν
√

4R4 + q2), and using (4.5)–(4.8) and the Gagliardo–Nirenberg inequality 
(2.6) we have

‖∇(θ1 − θ2)‖2
L2 + a‖(θ1 − θ2)‖2

L2 �
1
ν2a

C(‖u1‖H1 + ‖u2‖H1)
2‖u1 − u2‖2

L4

and therefore

‖∇(θ1 − θ2)‖2
L2 �

√
4R4 + q2

νq2 C(‖u1‖H1 + ‖u2‖H1)
2‖u1 − u2‖2

L4 , (4.9)

‖(θ1 − θ2)‖2
L2 �

4R4 + q2

q4 C(‖u1‖H1 + ‖u2‖H1)
2‖u1 − u2‖2

L4 . (4.10)

Using the above inequalities, and considering Cν,q that satisfies
√

4R4 + q2

νq2 +
4R4 + q2

q4 � Cν,q(1 + R2)2

we obtain

‖θ1 − θ2‖H1 � Cν,q(1 + R2)(‖u1‖H1 + ‖u2‖H1)‖u1 − u2‖L4 , (4.11)

from which we have the final estimate for the H1 norm

‖θ1 − θ2‖H1 �Cν,q(‖u1‖H1 + ‖u2‖H1)(1 + ‖u1‖2
L∞ + ‖u2‖2

L∞)

× ‖u1 − u2‖L4 .
 (4.12)

To obtain a Lipschitz estimate for ‖θ1 − θ2‖H2 we will use equation (4.1b) for the θj, and 
(4.4) to get

∣∣∇2(θ1 − θ2)
∣∣ � 2q

ν
|θ1 − θ2|+

4
ν
|u1|2|θ1 − θ2|+

2
ν
(|u1|+ |u2|)|u1 − u2|.

 
(4.13)
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Using (4.10) it then follows that
∥∥∇2(θ1 − θ2)

∥∥
L2 �Cν,q(‖u1‖H1 + ‖u2‖H1)(1 + ‖u1‖2

L∞ + ‖u2‖2
L∞)

× ‖u1 − u2‖L4 .
 (4.14)

Combining the above inequality, (4.12) and Gagliardo–Nirenberg (2.6), we obtain the esti-
mate (4.2). □ 

Lemma 4.1. Let f ∈ L1([0, ζ], H1(R2)), and define g by

g(z) = i
∫ z

0
W(z − z′) f (z′)dz′.

Then g ∈ Yζ and satisfies ‖g‖Yζ
� C1,2‖f‖L1([0,ζ],H1).

Proof. Since W(z) is a unitary operator, we have ‖g‖C([0,ζ],H1) � ‖f‖L1([0,ζ],H1(R2)). Using

∇g(z) = i
∫ z

0
W(z − z′)∇f (z′)dz′,

and the second Strichartz estimate (2.2) with p  =  q  =  4, r  =  1, γ = 1, we have 
‖∇g‖L4([0,ζ],L4) � C1,2‖∇f‖L1([0,ζ],L2). The statement then follows immediately from the defi-
nition of Yζ . □ 

Lemma 4.2. Let u0 ∈ H1(R2), and h(z)  =  W(z)u0. Then ‖h‖Yζ
� C4‖u0‖H1(R2).

Proof. The statement follows from the first Strichartz estimate (2.2) with p  =  q  =  4, and the 
fact that z �→ h(z) ∈ C([0, ζ]; H1). □ 

Lemma 4.3. Let B be the map defined by B(u) = u sin(2Θ(u)). Then B is bounded from 
Yζ  to L1([0, ζ], H1(R2)), moreover for any R  >  0 there exists C  >  0 such that u ∈ Yζ and 
‖u‖Yζ

� R imply ‖B(u)‖L1([0,ζ],H1(R2)) � C ζ‖u‖Yζ
.

Proof. Let θ = Θ(u). By |sin(2θ)| � 1, therefore ‖B(u)‖L2 � ‖u‖L2. Using ∇B(u) = ∇u 
sin(2θ) + 2u cos(2θ)∇θ, lemma 3.3, and Gagliardo–Nirenberg (2.6), we have

‖∇B(u)‖L2 � ‖∇u‖L2 + 2‖u‖L4‖∇θ‖L4

� ‖∇u‖L2 + C‖u‖L4‖θ‖H2

� C̃(‖∇u‖L2 + ‖u‖3
L4) � C̃(‖u‖H1 + ‖u‖3

H1).
 

(4.15)

The result follows by integration over [0, ζ]. □ 

Lemma 4.4. The map B : Yζ → L1([0, ζ], H1(R2)) defined in lemma 4.3 is locally  
Lipschitz, i.e. for any R  >  0 there exists C  >  0 such that u1, u2 ∈ Yζ and ‖u1‖Yζ

, ‖u2‖Yζ
� R 

imply

‖B(u1)− B(u2)‖L1([0,ζ],H1(R2)) � C (ζ + ζ2/3)‖u1 − u2‖C([0,ζ],H1). (4.16)

J P Borgna et alNonlinearity 31 (2018) 1535



1548

Proof. Let u1, u2 ∈ Yζ with ‖u1‖Yζ
, ‖u2‖Yζ

� R, we can see that

|B(u1)− B(u2)| � |u1 − u2|+ 2|u2||θ1 − θ2|,

with θj = Θ(uj). Therefore

‖B(u1)− B(u2)‖L2 �C(‖u1 − u2‖L2 + ‖u2‖L4‖θ1 − θ2‖L4)

�C(‖u1 − u2‖H1 + ‖u2‖H1‖θ1 − θ2‖H1).
 (4.17)

On the other hand, it is easy to see that

|∇B(u1)−∇B(u2)| � |∇(u1 − u2)|+ 2|∇u2||θ1 − θ2|
+ 2|u1 − u2||∇θ1|+ 2|u2||∇θ2 −∇θ1|
+ 4|u2||θ2 − θ1||∇θ2| = I1 + I2 + I3 + I4 + I5.

 
(4.18)

From the embeddings H1(R2) ↪→ L4(R2) and H2(R2) ↪→ L∞(R2), we estimate each term as

‖I1‖L2 � ‖∇(u1 − u2)‖L2 � ‖u1 − u2‖H1 ,
‖I2‖L2 �C‖∇u2‖L2‖θ1 − θ2‖L∞ � C‖u2‖H1‖θ1 − θ2‖H2 ,
‖I3‖L2 �C‖∇θ1‖L4‖u1 − u2‖L4 � C‖θ1‖H2‖u1 − u2‖H1 ,
‖I4‖L2 �C‖u2‖L4‖∇θ2 −∇θ1‖L4 � C‖u2‖H1‖θ2 − θ1‖H2 ,
‖I5‖L2 �C‖u2‖L4‖∇θ2‖L4‖θ2 − θ1‖L∞ � C‖u2‖H1‖θ2‖H2‖θ2 − θ1‖H2 .

 

(4.19)

From lemma 3.3 we also have ‖θj‖H2 � C‖uj‖2
H1 . Thus, proposition 4.1, the Gagliardo–Niren-

berg inequality (2.5), and (4.17)–(4.19) imply that

‖B(u1)− B(u2)‖H1 � C(R)(1 + ‖∇u1‖4/3
L4 + ‖∇u2‖4/3

L4 )‖u1 − u2‖H1 .

Integrating over [0, ζ], we obtain

‖B(u1)− B(u2)‖L1([0,ζ],H1) �C(R)‖u1 − u2‖C([0,ζ],H1)

×
∫ ζ

0
(1 + ‖∇u1‖4/3

L4 + ‖∇u2‖4/3
L4 ) dz,

and using Hölder’s inequality we finally have

‖B(u1)− B(u2)‖L1([0,ζ],H1) � C
(
ζ + ζ2/3

)
‖u1 − u2‖C([0,ζ],H1).

for some constant C that depends on R, as stated. □ 

The local existence of solutions of the evolution equation (4.1) is established by the next 
theorem.

Theorem 4.1. Given u0 ∈ H1(R2), there exists ζ = ζ(‖u0‖H1) > 0 and a unique 
(u, θ) ∈ Yζ × L∞([0, ζ], H2(R2)) that satisfies (4.1) and θ ∈ [0,π/4]. Furthermore, the map 
u0 �→ u is continuous from H1(R2) to Yζ .
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Proof. From lemmas 4.1–4.3, the map Γ defined in Yζ  by

(Γu)(z) = W(z)u0 + i
∫ z

0
W(z − z′)B(u(z′))dz′, z ∈ [0, ζ], (4.20)

satisfies Γu ∈ Yζ. (The dependence of Γ on u0 is not made explicit in this notation.) By lem-
ma 3.3, we also have that u ∈ Yζ implies θ = Θ(u) ∈ L∞([0, ζ], H2(R2)). Define h ∈ Yζ by 
h(z) = W(z)u0, z ∈ [0, ζ], and consider the closed ball Bh(R) ⊂ Yζ  that is centered at h and 
has radius R  >  0. Using lemmas 4.1 and 4.3 we see that if ζ is sufficiently small then

‖Γu − h‖Yζ
� C(‖h‖Yζ

+ R)ζ � R. (4.21)

Thus Γ maps the closed ball to its interior. To complete the argument we will prove that Γ is a 
contraction in Bh(R). Then it will have a unique fixed point in Bh(R).

Let u1, u2 ∈ Yζ. Then for 0 � z � ζ

(Γu1)(z)− (Γu2)(z) = i
∫ z

0
W(z − z′)(B(u1(z′))− B(u2(z′)))dz′, (4.22)

and by lemmas 4.1, 4.4 we have

‖Γ(u1)− Γ(u2)‖Yζ
�C‖B(u1)− B(u2)‖L1([0,ζ],H1)

�C(R) (ζ + ζ2/3)‖u1 − u2‖Yζ
.

 (4.23)

Thus taking ζ such that C(R) (ζ + ζ2/3) < 1 we see that Γ is a contraction in Bh(R).
To see the continuity on the initial conditions, we consider solutions uj, with respective ini-

tial conditions vj, j  =  1, 2. We use the notation Γvj(uj) for the map Γ of (4.20). By uj = Γvj(uj) 
we can immediately combine (4.23) and lemma (4.2) to see that for ζ sufficiently small we 
have ‖u1 − u2‖Yζ

� C‖v1 − v2‖H1, as required. □ 

The above result of local existence, and the conservation of energy (1.4), leads to the fol-
lowing global existence statement.

Theorem 4.2 (Global existence). Given u0 ∈ H1(R2), there exists a unique 
(u, θ) ∈ C(R, H1(R2))× L∞(R, H2(R2)) such that θ ∈ [0,π/4] and ∇u ∈ L4

loc(R, L4(R2)) 
solution of (1.1).

Proof. To obtain global existence we use smoother solutions (u, θ) and the continu-
ous dependence. Given u ∈ H2(R2), we use the fact that H2(R2) is a Banach alge-
bra, and the argument of proposition 4.1, to prove that Θ(u) ∈ H4(R2). Moreover, we 
use the argument of theorem 4.1 to see that for u0 ∈ H2(R2) we have the local solution 
(u, θ) ∈ C([0, ζ], H2(R2))× L∞([0, ζ], H4(R)), with u ∈ C1([0, ζ], L2(R2)). Considering 
such (u, θ), we use the explicit form of the energy in (1.4), to see that

H(u, θ) �
1
4
‖∇u‖2

L2 −
1
2
‖u‖2

L2

and therefore ‖u‖2
H1 � 4H(u, θ) + 3‖u‖2

L2, where the right side is a constant depending on 
‖u0‖H1. From continuous dependence on initial data, we obtain an a priori bound for ‖u‖2

H1. 
Now, by an usual prolongation argument we can assert that u is defined on R . □ 
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We conclude this section showing that if ‖u0‖L2 is sufficiently small, then the solution of 
(4.1) satisfies u ∈ L4(R, L4(R2)). As a consequence the soliton solutions considered in the 
next section can not have arbitrarily small L2  −  norm.

Proposition 4.2. There exists C  >  0 such that if (u, θ) ∈ Yζ × L∞([0, ζ], H2) is the  
solution of (4.1), then

‖u‖L4([0,ζ],L4) � C‖u0‖L2 + C‖u‖3
L4([0,ζ],L4). (4.24)

Proof. The solution u of (4.1a) satisfies

u(z) = W(z)u0 + i
∫ z

0
W(z − z′)u(z′) sin(2θ(z′))dz′ = h(z) + g(z).

From Strichartz estimates (2.2) we obtain

‖h‖L4([0,ζ],L4) �C4,2‖u0‖L2 ,

‖g‖L4([0,ζ],L4) �C4,4/3‖u sin(2θ)‖L4/3([0,ζ],L4/3).
 (4.25)

Then Hölder’s inequality, and ‖θ‖L2 � C̃‖u‖2
L4 from lemma 3.3 yield

‖u sin(2θ)‖4/3
L4/3([0,ζ],L4/3)

�C4/3
4,4/3

∫ ζ

0
‖u(z)‖4/3

L4 ‖θ(z)‖4/3
L2 dz

� C̃C4/3
4,4/3

∫ ζ

0
‖u(z)‖4

L4 dz � C‖u‖4
L4([0,ζ],L4).

 

(4.26)

The statement follows immediately from (4.25) and (4.26), with C depending on C4,2, C4,4/3, 
and C̃. □ 

Lemma 4.5. Let f (τ) = a + C τ 3 with 0 < a < 2
3
√

3C
, C  >  0. Then there exist 0 < τ1 < τ2 

such that τ > f (τ), τ > 0 are satisfied if and only if τ ∈ (τ1, τ2).

Proposition 4.3. There exists a0  >  0 such that if u0 ∈ H1(R2) satisfies ‖u0‖L2 < a0, then 
the solution of (1.1) satisfies ‖u‖L4(R,L4) < ∞.

Proof. Let a0  >  0 such that a0 < 2
3
√

3C
 and let τ(ζ) = ‖u‖L4([0,ζ],L4). It is easy to see that 

τ(ζ) is continuous and τ(0) = 0. By proposition 4.2, τ(ζ) � f (τ(ζ)) for any ζ > 0, where f 
is as in lemma 4.5. Lemma 4.5 then implies τ(ζ) � τ1, for all ζ > 0. The result can be easily 
extended to negative ζ, e.g. using the complex conjugate of u0 as initial condition. □ 

5. Existence of ground states

In this section we study the existence of solutions (u, θ) of the stationary problem associ-
ated to the system (1.1). Using the ansatz u(x, z) = eiσzv(x) with σ ∈ R and θ(x, z) = φ(x),  
equation (1.1) become
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0 =∇2v − 2σv + 2v sin(2φ),

0 =∇2φ− q
ν
sin(2φ) +

2
ν
|v|2 cos(2φ).

 (5.1)

Let

Sa =
{
(v,φ) ∈ H1(R2)× H1(R2) : ‖v‖2

L2 = a
}

, (5.2)

where H(v,φ) is given in (1.4). We will show the existence of an element (v, θ) of Sa attaining 
the infimum Ja = inf(v,θ)∈Sa H(v, θ). We can see that H is differentiable in H1(R2)× H1(R2), 
and that such a minimizer (v, θ) must satisfy (5.1) for some real σ.

We first observe that H(v,φ) � − a
2 , and therefore Ja > −∞. Also we have 

H(0,φ), H(v, 0) � 0.
Let P(t) be a π/2–periodic continuous function defined on [0,π/2] as follows: P(t) = t   

if 0 � t � π/4, and P(t) = π/2 − t  if π/4 � t � π/2.

Lemma 5.1. Let (v,φ) ∈ Sa. Then (|v|, P(φ)) ∈ Sa, and

H(|v|, P(φ)) � H(v,φ).

Proof. First, ∇P(φ) = P′(φ)∇φ = ±∇φ implies ‖∇P(φ)‖L2 = ‖∇φ‖L2. Also, |∇|v|| � |∇v|  
implies ‖∇|v|‖L2 � ‖∇v‖L2. Moreover, we check that sin(2P(φ)) = |sin(2φ)|, and 
cos(2P(φ)) = |cos(2φ)|, for all φ real. By (1.4) it then follows that H(v,φ) � H(|v|, P(φ)). 
 □ 

By lemma (5.1) we can restrict our attention to functions (v,φ) such that v � 0 and 
0 � φ � π/4 almost everywhere in R2.

Let ϕ∗ denote the symmetric decreasing rearrangement of ϕ : Rn → R+ a measurable 
function such that |{x ∈ Rn : ϕ(x) > t}| < ∞ for any t  >  0. We recall the following lemma, 
see [15].

Lemma 5.2. Let f : R+ → R+ be a increasing continuous function such that f (0) = 0 , 
then for all ϕ : Rn → R+ measurable, ( f ◦ ϕ)∗ = f ◦ ϕ∗

Proposition 5.1. Let (v,φ) ∈ H1(R2)× H1(R2) with v � 0 and 0 � φ � π/4, a.e. in R2. 
Then H(v∗,φ∗) � H(v,φ), where v* and φ∗ are the symmetric decreasing rearrangements of 
v and φ respectively.

Proof. Applying the Pólya–Szegö inequality, we have that

1
4
‖∇v∗‖2

L2 +
ν

4
‖∇φ∗‖2

L2 �
1
4
‖∇v‖2

L2 +
ν

4
‖∇φ‖2

L2 . (5.3)

The functions 1 − cos(2φ), sin(2φ) are increasing continuous on [0,π/4] and vanish at the 
origin. Lemma 5.2 then implies (1 − cos(2φ))∗ = 1 − cos(2φ∗), and (sin(2φ))∗ = sin(2φ∗). 
The first equality yields
∫

R2

q
4
(1 − cos(2φ))dx =

∫

R2

q
4
(1 − cos(2φ))∗dx =

∫

R2

q
4
(1 − cos(2φ∗))dx,

 

(5.4)
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while the second equality and the product rearrangement inequality of [15], chapter 3.4, imply
∫

R2
v2 sin(2φ)dx �

∫

R2
v∗2 sin(2φ)∗dx =

∫

R2
v∗2 sin(2φ∗)dx. (5.5)

The conclusion follows immediately from (5.3)–(5.5). □ 

Proposition 5.2. There exists ã > 0 such that if 0 < a � ã, then Ja  =  0. Also, there exists 
b > ã > 0 such that Ja  <  0 for all a � b.

Proof. Since 0 � φ � π/4 we have 1 − cos(2φ) � φ2, and therefore
∫

R2

q
4
(1 − cos(2φ))dx �

q
4
‖φ‖2

L2 .

On the other hand,
∫

R2
v2 sin(2φ)dx � ‖v‖2

L4‖sin(2φ)‖L2

� 2‖v‖2
L4‖φ‖L2 �

2
q
‖v‖4

L4 +
q
2
‖φ‖2

L2 .

Thus

H(v,φ) �
1
4
‖∇v‖2

L2 +
ν

4
‖∇φ‖2

L2 −
1
q
‖v‖4

L4 ,

so that by the Gagliardo–Nirenberg inequality (2.6), ‖v‖4
L4 � C a‖∇v‖2

L2, we have Ja � 0 if 
a � ã = q/(4C).

Consider now some v ∈ H1(R2) with ‖v‖2
L2 = a, and let uλ(x) = λv(λx). We have 

‖uλ‖2
L2 = a and ‖∇uλ‖2

L2 = λ2‖∇v‖2
L2, therefore H(uλ, 0) = λ2H(v, 0) → 0 as λ → 0. We 

conclude that Ja  =  0 for a � ã, proving the first statement.
To show the second statement, we use the fact that if φ ∈ [0,π/4] then 1 − cos(2φ) � 2φ2, 

and sin(2φ) � 4
πφ. Letting v = αφ, α ∈ R, we then have

H(αφ,φ) �
α2 + ν

4
‖∇φ‖2

L2 +
q
2
‖φ‖2

L2 −
2α2

π
‖φ‖3

L3

=
α2 + ν

4

(
‖∇φ‖2

L2 +
2q

α2 + ν
‖φ‖2

L2 −
8
π

α2

α2 + ν
‖φ‖3

L3

)
.

 

(5.6)

Consider some φ1 ∈ H1(R2) satisfying φ1 �≡ 0, and 0 � φ1 � π/4 everywhere, and let 
φλ(x) = φ1(λx). We have ‖φλ‖2

L2 = λ−2‖φ1‖2
L2, ‖φλ‖3

L3 = λ−2‖φ1‖3
L3 and ‖∇φλ‖2

L2 = ‖∇φ1‖2
L2. 

Then, for all α ∈ R, (5.6) implies

H(αφλ,φλ) �
α2 + ν

4

(
‖∇φ1‖2

L2 +
2qλ−2

α2 + ν
‖φ1‖2

L2 −
8
π

α2λ−2

α2 + ν
‖φ1‖3

L3

)
.

 

(5.7)
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Fixing α >

(
πq‖φ1‖2

L2

4‖φ1‖3
L3

)
1/2, we see from (5.7) that there exists λ0 > 0 (depending on α, 

‖∇φ1‖L2) such that 0 < λ < λ0 implies H(αφλ,φλ) < 0. on the other hand, ‖v‖2
= α2

λ2 ‖φ1‖2
L2, 

therefore a � b = α2

λ2
0
‖φ1‖2

L2 implies Ja  <  0. □ 

By proposition 5.1 it is sufficient to look for the minimizer in H1
rad(R2)× H1

rad(R2).

Proposition 5.3. Let a  >  0 be such that Ja  <  0. There exists (v,φ) ∈ H1(R2)× H1(R2) 
that satisfies (v,φ) ∈ Sa, and H(v,φ) = Ja. In addition, we may assume that 
(v,φ) ∈ H1

rad(R2)× H1
rad(R2), v � 0 and φ ∈ [0,π/4].

Proof. Let A = {(vn,φn)}n∈Z+ ⊂ Sa be a minimizing sequence for H. By lemma 
5.1 and proposition 5.1 we may assume that the minimizing sequence A also belongs to 
H1

rad(R2)× H1
rad(R2), and that its elements (vn,φn) satisfy vn � 0, φn ∈ [0,π/4] a.e. in R2, 

for all n ∈ Z+.
By (1.4) we have

‖vn‖2
H1 � sup

n
4H(vn,φn) + 3a, (5.8)

also, using 1 − cos(2φ) � φ2 for φ ∈ [0,π/4],

H(v,φ) �
ν

4
‖∇φ‖2

L2 −
1
2
‖v‖2

L2 +
q
4
‖φ‖2

L2

� −1
2

a +
1
4
min{ν, q}‖φ‖2

H1 ,

therefore

‖φn‖2
H1 � Cq,ν

(
sup

n
4H(vn,φn) + 2a

)
. (5.9)

Then there exists a subsequence of A that is weakly convergent to (v,φ) in 
H1

rad(R2)× H1
rad(R2). We denote this subsequence also by A = {(un,φn)}n∈Z+. Since 

H1
rad(R2) is compactly embedded in L p(R2), for any 2 < p < ∞, see [3], the subsequence 

converges strongly to (v,φ) ∈ L3(R2)× L3(R2). This implies that vn → v and φn → φ a.e., 
therefore we may assume v � 0, 0 � φ � π/4 a.e. in R2.

To see that the limit is the minimizer, we use the weak semi-continuity of the L2 norm to 
obtain

‖v‖2
L2 � lim inf

n
‖vn‖2

L2 = a, (5.10)

1
4
‖∇v‖2

L2 +
ν

4
‖∇φ‖2

L2 � lim inf
n

(
1
4
‖∇vn‖2

L2 +
ν

4
‖∇φn‖2

L2

)
. (5.11)

On the other hand, by Fatou’s lemma,
∫

R2
(1 − cos(2φ))dx � lim inf

n

∫

R2
(1 − cos(2φn))dx. (5.12)
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Also, vn → v in L3(R2) implies v2
n → v2 in L3/2(R2). Moreover, 

|sin(2φn)− sin(2φ)| � 2|φn − φ| implies sin(2φn) → sin(2φ) in L3(R2). Therefore

lim
n

∫

R2
v2

n sinφndx =

∫

R2
v2 sinφdx. (5.13)

Collecting (5.11)–(5.13), we therefore have

H(v,φ) � lim inf
n

H(un,φn) = Ja < 0. (5.14)

Using the fact that H(v, 0), H(0,φ) � 0, we conclude that (v,φ) �≡ (0, 0), v �≡ 0, moreover by 
(5.10) we have 0 < ‖v‖2

L2 � a. Let λ =
√

a/‖v‖L2 � 1, we check that (λ v,φ) ∈ Sa, and that

Ja � H(λ v,φ) � λ2H(v,φ) � λ2Ja � Ja < 0. (5.15)

It follows that λ = 1. Therefore (v,φ) ∈ Sa, and H(v,φ) = Ja. □ 

Corollary 5.1. There exists a0  >  0 such that Ja  =  0 for 0 < a � a0, and Ja  <  0 for a  >  a0. 
Moreover, the map a �→ Ja is decreasing in (a0,∞).

Proof. Let (v,φ) ∈ Sa satisfying H(v,φ) = Ja < 0, then for λ > 1 we have that 
(λ v,φ) ∈ Sλ2a and H(λ v,φ) � λ2H(v,φ) < 0. Then if 0  <  a  <  b we have

Jb �
b
a

Ja < Ja < 0.

Defining a0 = inf {a > 0 : Ja < 0}, it therefore follows that Ja  <  0 for all a ∈ (a0,∞). By the 
definition of a0 we have Ja � 0 for a ∈ (0, a0], and we use the scaling argument in the proof 
of proposition 5.2 to conclude that Ja  =  0. □ 
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Appendix. Derivation of model equations for optical solitons

We present the main steps of the derivation of model equation (1.1) from a ‘first-principles’ 
model’ that couples the Oseen–Frank equations for the nematic liquid crystal director field to 
Maxwell’s equations for the electric fields, see [11, 12, 18]. The derivation is not rigorous, the 
goal is rather to make explicit the main assumptions leading to the simplified system of [22] 
and to its approximation by (1.1) of [21].

The macroscopic average orientation of the liquid crystal molecules (director field) occu-
pying a domain D ⊂ R3 is described by the unit vector field n : D → S2. For suitably sym-
metric molecules we require that the image belongs to the projective plane, or equivalently 
that equations are symmetric under n → −n.
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The equations for the director field are obtained by formally extremizing the functional 
V + U, where V  represents the Oseen–Frank elastic energy of the nematic liquid crystal, and 
U describes the coupling of the director field to external electric fields. The Oseen–Frank 
elastic energy V  is given by

V =

∫

D
V , V =

1
2
(
K1(∇ · n̂)2 + K2(n̂ · ∇ × n̂)2 + K3|n̂ ×∇× n̂|2

)
,

 

(A.1)

with K1, K2, K3 constants, see [11, 12]. V is the corresponding energy density. We will assume 
K1 = K2 = K3 = K, see [21]. The coupling energy is

U = −
∫

D
U, U = D · E, D = εE. (A.2)

Physically, D is the displacement current, and ε the susceptibility matrix. We assume that 
ε at each point x ∈ D is diagonal in a system of coordinates that consists of n(x), and two 
orthogonal vectors ̂e1(x), ̂e2(x) that are perpendicular to n(x). In the case where the molecules 
are symmetric with respect to rotations around n we have

ε(x) =



ε‖(x) 0 0

0 ε⊥(x) 0
0 0 ε⊥(x)


 . (A.3)

We then have

D = εE = ε‖(E · n̂)n̂ + ε⊥[E − (E · n̂)n̂] = (ε‖ − ε⊥)(E · n̂)n̂ + ε⊥E. (A.4)

For a homogeneous material, we can assume that the ε‖, ε⊥ are constant. By (A.2) and (A.4) 
we then have

U = δε(E · n̂)2 + ε⊥(E · E)2, (A.5)

where δε = ε‖ − ε⊥. We also assume δε > 0, this means that the molecule is oblong, and that 
n is the axis of the longer dimension.

The equations  for n in the bulk are the formal Euler–Lagrange equations  for V + U 
in R3, assuming decay at infinity. Boundary conditions are imposed afterwards. For 
instance, describing n(x) by polar and azimuthal angles φ1(x), φ2(x), x = [x1, x2, x3], the  
Euler–Lagrange equations are

∂L
∂φk

−
3∑

j=1

∂

∂xj

∂L
∂φk, j

= 0,

with L = V − U, φk, j =
∂φk

∂xj
, k = 1, 2.

 

(A.6)

In the experimental geometry of interest, see [4], the nematic liquid crystal occupies the 
region between two parallel planes at x = ±d/2, i.e x is the vertical coordinate. The horizontal 
coordinate z is referred to as the optical axis. The coordinate y represents the second direction 
that is transverse to the optical axis. Thus D = {(x, y, z) ∈ R3 : (y, z) ∈ R2, x ∈ [−d/2, d/2]}.

We shall further assume that the director and electric fields have the respective form

n(x) = [sinϑ(z, y, x), 0, cosϑ(x, y, z)], E = [E(x, y, z), 0, 0]. (A.7)

Physically, light is polarized on the plane of the director field vectors, and is perpendicular to 
the optical axis, see [21] for more general polarizations.
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By (A.7) and (A.5) the energies of (A.1) and (A.2) reduce to

V =
1
2

K(ϑ2
x + ϑ2

y + ϑ2
z ), U = δε(E)2 sin2 +ε⊥E2. (A.8)

Then by (A.6),

K(ϑxx + ϑyy + ϑzz) = −δε(E)2 sin 2ϑ. (A.9)

Note that in the above formulation we have assumed that all quantities are independent 
of time. We will however use equation  (A.9) also for cases where the electric field varies 
rapidly, with (E)2 replaced in (A.9) by a suitable time average. In particular, we are inter-
ested in E of the form E = Eb + EL, where Eb is a constant field applied to the sample, 
and EL(x,y,z,t) represents the field of a laser beam that we shine from the left side. Letting 
EL(x, y, z, t) = Re

(
A(x, y, z)eiωt

)
, with A(x, y, z) a complex amplitude specified below, and 

(A.9) becomes

K(∇2ϑ+ ϑzz) = −δε(E2
b +

1
2
|A|2) sin 2ϑ, (A.10)

where ∇2 = ∂2
x + ∂2

y  is the transverse Laplacian. Equation (A.10) is in essence the second 
equation of (1.2) in [18], see also [11]. The difference is that we here have an additional con-
stant field Eb.

The constant Eb is assumed to satisfy Eb � E0, where E0 is the smallest E > 0 for which

KΘxx = −δεE2 sin 2Θ, Θ(−d/2) = Θ(d/2) = 0, (A.11)

has a nontrivial solution Θ : [−d/2, d/2] → R.
E0 is known as the Friedriekcz threshold field (for [−d/2,d/2]). Given E � E0 , (A.11) has 

exactly two nontrivial solutions ±Θ(E), with Θ(E)(x) > 0, ∀x ∈ (−d/2, d/2). The maximum 
of Θ(E) is attained at x  =  0, see e.g. [21].

Physically, the boundary condition in (A.11) means that the director field is fixed at the 
vertical physical boundaries of the sample, and that it is parallel to the walls, in the required 
plane. Moreover, the bias electric field Eb should be strong enough to start rotating the mol-
ecules inside the sample. If E < E0  then the only solution of (A.11) is the trivial one. In the 
experiments modeled by [18], the boundary conditions are the same but the constant term 
Eb is absent. The laser field |A|2 must be strong enough to overcome this barrier to rotate the 
molecules. This leads to a more complicated bifurcation problem.

We now turn to Maxwell’s equations for the electromagnetic field inside the liquid crystal 
sample. As before, we derive the bulk equations first. Maxwell’s equations for a dielectric in 
R3 are

∇ · E = 0, ∇× E +
1
c
∂B
∂t

= 0, ∇× B − 1
c
∂D
∂t

= 0, ∇ · B = 0, (A.12)

where D, E, B are vector fields in R3, representing the displacement current, and the electric 
and magnetic fields respectively. We immediately obtain

c2(∇2E + Ezz)−
∂2D
∂t2 = 0. (A.13)

The relation D = εE, and (A.4) couples the electric field E to n. Note that (A.13) describes 
three equations, corresponding to the components of E, and D along the x, y and z axes. We 
further assume (A.7), which reduces (A.13) to two equations  for the x and z−components 
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respectively. Following [18], we will keep only the equation for the x  −  axis components of 
E, D in (A.13), namely

c2(∇2E + Ezz)−
∂2

∂t2 (δεE sin2 ϑ+ ε⊥E) = 0. (A.14)

A further simplification comes by assuming that since n in (A.10) is an equation for an aver-
aged director field, then we can write ∂2

t (E sin2 ϑ) ≈ sin2 ϑ∂2
t E, so that (A.14) is further sim-

plified to

∇2E + Ezz −
n2
⊥

c2 (α sin2 ϑ+ 1)∂2
t E = 0, (A.15)

where have introduced the parallel and perpendicular refraction indices n2
‖ = ε‖, n2

⊥ = ε⊥ 
respectively, and the dielectric anisotropy parameter α = (ε‖ − ε⊥)/ε⊥. Equation (A.15) is 
analogous to the first equation of (1.2) in [18]. We consider an electric field of the form

E(x, y, z, t) = Eb + A(
√
εx,

√
εy, εz, εt)ei(kz−ωt) + c.c., (A.16)

where k, ω are related through

k2 =
n2
⊥

c2 (α sin2 θ0 + 1)ω2, (A.17)

and θ0  is the maximum value of a solution Θ0 of (A.11) with E = Eb > E0. (The maximum 
is attained at the origin.) The bias field Eb is constant and the second term in (A.16) describes 
the laser field. Letting x1 =

√
εx , y1 =

√
εy, z1 = εz, t1 = εt, and ∇2

1 = ∂2
x1
+ ∂2

y1
, (A.15), 

with (A.16) leads to

ε∇2
1A + 2ikε∂z1 A +

n2
⊥ω

2

c2 α(sin2 ϑ− sin2 θ0)A + 2iω
n2
⊥

c2 ε∂t1 A = O(2),
 

(A.18)

where O(2) denotes terms that are of order 2 or higher in ε and α. By (A.17) we have 
ω = ± c

n⊥
k + O(α), so that letting τ = t1 ∓ n⊥

c z1, ζ = z1, (A.18) becomes the NLS-type 
equation

2ikε∂ζA + ε∇2
1A +

n2
⊥ω

2

c2 α(sin2 ϑ− sin2 θ0)A = 0, (A.19)

up to an error of O(2). Using the scaled variables x1, y1, z1 in (A.10) we also obtain

Kε∇2
1ϑ = −αn2

⊥(E
2
b +

1
2
|A|2) sin 2ϑ, (A.20)

up to an error of O(2). This step eliminates the derivatives along z1, up to O(2).
Equations (A.19) and (A.20) originally appeared in [22]. We note that there is no assump-

tion on the size of the laser field relative to Eb. The derivation for Eb  =  0 is the same, but θ0  
must be interpreted as a ‘typical value’ of ϑ in the region of interest.

We derive from (A.19) and (A.20) a second system by letting ϑ = Θ0 + θ, where ϑ, and θ 
are functions of x1, y1, z1, and Θ0(x) satisfies (A.11) with E = Eb, Eb � E0 Thus θ is the devia-
tion from the ‘pre-tilt’ angle Θ0.

A first step is to consider the director equation  (A.20) and use equation  (A.11) for Θ0, 
obtaining
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K∇2θ =αn2
⊥(E

2
b sin 2Θ0(1 − cos 2θ)− 1

2
|A|2cos 2Θ0sin 2θ

− E2
bcos 2Θ0sin 2θ − 1

2
|A|2sin 2Θ0cos 2θ).

 

(A.21)

We simplify this equation by assuming Θ0 ≈ θ0 . Letting q = θ0 − π/4 we further assume that 
q ∼ |A|/Eb ∼ h , θ ∼ h2, where h is a small parameter. (A.21) then becomes

K∇2θ = −αn2
⊥E2

bcos 2θ0sin 2θ − αn2
⊥

1
2
|A|2sin 2θ0cos 2θ, (A.22)

up to an error of O(h4). The two terms we kept were ∼ h3 and ∼ h2. We also assume q  >  0, 
so that cos 2θ0 = −2q + O(q3) < 0 in (A.22). Using similarly Θ0 ≈ θ0 , and the same scaling 
assumptions on q, θ in (A.19) we have

2iεk∂ζA +∇2A +
n2
⊥ω

2

c2 αsin 2θ0sin 2θA = 0, (A.23)

up to an error of O(h4). The term we kept is ∼ h2. System (A.22), (A.23) leads to (1.1).
The derivation of system (A.22) and (A.23) therefore assumes that the laser field is small 

compared to the bias field. Also the additional angle θ is assumed small, while q  >  0 and 
small implies that the laser beam goes through a region of the sample where the pre-tilt 
angle θ0  is slightly above π/4. The above derivation also suggests more general systems, 
e.g. using (A.21) for the director field, with Θ0 suitably approximated in an infinite domain, 
e.g. Θ0 = θ0 . The infinite domain problem approximates small scale effects in a region near 
x  =  0. Equations (A.19) and (A.20) require a more careful analysis of the scales of the fields 
produced by Eb and |A|.
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