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a b s t r a c t

We study a coupled Schrödinger-elliptic evolution system that describes the propagation of a laser
beam in nematic liquid crystals. The elliptic equation describes the effects of the beam electric field
on the local orientation (director field) of the nematic liquid crystal and has an important regularizing
effect, seen experimentally and understood theoretically in related models. In the present work we
propose a new nonlinear elliptic equation for the director field that makes no assumption on the size
of the director field angle. The analysis of this elliptic equation leads to an upper bound for the size of
the director angle that we believe is optimal and physically relevant, and that implies that the elastic
response of the medium prevents a complete alignment between the electric field and the orientation
of the liquid crystal. The results on the elliptic problem are combined with arguments from dispersive
wave theory to show the local and global well-posedness of the evolution problem and the decay of
small initial conditions. We also show the existence of constrained minimizers of the Hamiltonian,
assuming sufficiently large optical power (L2−norm of the laser field). These minimizers are solitons
with radial, monotonically decreasing profiles.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We present results on well-posedness, decay and soliton solu-
tions of the coupled nonlinear Schrödinger (NLS) equation

∂zu =
1
2
i∇2u + iγ (sin2(ψ + θ0) − sin2(θ0))u, (1.1a)

ν∇2ψ =
1
2
E2
0 sin(2θ0) −

1
2
(E2

0 + |u|2) sin(2(ψ + θ0)), (1.1b)

where u and ψ depend on the ‘‘optical axis’’ coordinate z ∈ R,
and the ‘‘transverse coordinates’’ (x, y) ∈ R2. ∇2

= ∂2x + ∂2y is the
Laplacian in the transverse directions. E0, ν and γ are positive
constants, and θ0 is a constant satisfying θ0 ∈ (π/4, π/2).

The model arises in the study of optical beam propagation
in nematic liquid crystals and models a set of experiments by
Assanto and collaborators [1–3]. The complex quantity u repre-
sents the electric field amplitude of a laser beam that propagates
through a nematic liquid crystal along the optical axis z. The laser
electric field has only one component, along the vertical axis x of
the plane normal to the optical axis z. The quantity θ := θ0 + ψ

(the ‘‘director field’’) describes the macroscopic orientation of

∗ Corresponding author.
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the nematic liquid crystal molecules. The macroscopic molecular
orientation vector field is assumed to lie on the plane defined by
the optical axis z and the vertical direction x, and θ is the angle
between the macroscopic molecular orientation vector and the
z-axis.

System (1.1) is derived heuristically in the Appendix, where
we also discuss further the physical meaning of the variables, the
assumptions on the constants, and the experimental geometry.

The model (1.1) is a generalization of two related systems
studied earlier, (1.2), (1.3), that were derived under the assump-
tion that ψ is small [4]. In contrast, the derivation of (1.1) does
not make any explicit assumptions on the size of ψ .

The first related model, see [3,4], is

∂zu =
1
2
i∇2u +

1
2
iγ u sin(2ψ), (1.2a)

ν∇2ψ = q sin(2ψ) − 2 |u|2 cos(2ψ), (1.2b)

with q > 0. A simpler model, obtained using sinψ ≈ ψ , cosψ ≈

1, is

i∂zu +
1
2
∇

2u + γψu = 0, (1.3a)

ν∇2ψ − 2qψ = −2 |u|2 , (1.3b)
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with q > 0. The constant q is related to θ0 of (1.1) by −2q =

cos 2θ0 up to an error O(ψ2), see [4], i.e. q > 0 requires θ0 > π/4
up to this error, see the Appendix for further comments.

Model (1.3) captures the physical effect that a localized electric
field u can produce a deformation of the director angle ψ at
longer distances and is consistent with the experimental observa-
tion of stable optical solitons [3]. Partial theoretical explanations
were given in [5–7].

Mathematical results on (1.3) include local and global well-
posedness in H1, existence of energy minimizing soliton solu-
tions, and decay for small initial L2 norm, see [8–10]. Similar
results for related NLS-elliptic systems are shown in [11–14].

Recently, results of this type were also shown in [4] for (1.2).
The motivation for the present study comes from a new effect
seen in that work, namely that ψ takes values in [0, π/4). This
is a ‘‘saturation’’ effect due to the nonlinear equation (1.2b) for
ψ . The bound on ψ , together with θ0 > π/4, allows for (but
does not imply) a bound θ = θ0 + ψ < π/2 on the total
angle, implying that the molecular orientation cannot be along
the laser electric field. This bound would be interesting because
the interaction between ψ and u in (1.2b) describes the ten-
dency of the electric field and the molecular orientation to align,
see Appendix. On the other hand, the derivation of (1.2) uses
the assumptions that θ0 − π/4 is positive and small, and that ψ
is also small compared to θ0 − π/4 see [3,4]. Thus the physical
relevance of this saturation effect motivates the study of systems
derived without the assumption that ψ is small.

Our first result is that given u ∈ L4(R2) ∩ L∞(R2), Eq. (1.1b)
has a unique solution ψ(|u|2) that belongs to H2(R2) and satisfies
ψ(x) ∈ [0, π/2−θ0) ⊂ [0, π/4), for all x ∈ R2, see Proposition 2.1,
Lemma 2.2, and Corollary 2.1. This is the saturation effect that
the total angle θ = θ0 + ψ is less that π/2. This seems to be a
sharp bound on the saturation of the nonlinearity. In particular
it is more precise than the bound obtained in [4] and follows
from a more general model that has no small size assumptions
for θ0 − π/4 and ψ . The condition θ0 > π/4 is technical and
was implicit in the other two models, see Appendix for the
meaning of the assumptions on θ0. The solution of (1.1b) uses a
global continuation argument. The equation is rewritten around
each solution as a linear regular elliptic operator plus a nonlinear
term, see Proposition 2.1. The regularity of the linear part uses
the assumptions E0 > 0, θ0 ∈ (π/4, π/2), and also the property
that the range of ψ belongs to [0, π/4), for all u. The fact that ψ
remains in that interval as we vary u is shown in Lemmas 2.1, 2.2.

The second set of results concerns local and global existence
of the initial value problem for (1.1), assuming initial conditions
u0 ∈ H1(R2), see Theorems 3.1, 3.2 respectively for precise
statements in Section 3. We also prove that the solution decays
for initial conditions u0 ∈ H1 with sufficiently small L2−norm,
see Proposition 3.3. The local existence theory uses the regu-
larity of the map ψ(u) and the right hand side of (1.1a), fol-
lowing from the results on (1.1b) in Section 2, and Strichartz
estimates. The Strichartz estimates yield additional control u(z) ∈

L4(R2) ∩ L∞(R2) so that (1.1b) can be solved for almost all z
as the system evolves. Global existence uses the conservation
of the Hamiltonian H and the optical power (L2−norm of u) of
the system, see Section 4. The bound of the H1

−norm follows
from the conservation of energy and uses the assumption on θ0
and the result that ψ ∈ [0, π/4) everywhere from the analysis
of Eq. (1.1b). The decay result for initial conditions with small
L2−norm uses Strichartz estimates to show that the solutions
belong to L4([0,∞), L4(R2)).

We also show existence and nonexistence results for soliton
solutions (1.1). The main result is Proposition 4.3 of Section 3,
showing the existence of minimizers of the Hamiltonian H(u, ψ)
over configurations (u, ψ) ∈ H1

× H1 with the constraints that

L2−norm of u is fixed, and ψ is essentially bounded below by a
suitable negative constant. The result holds under the assumption
that L2−norm of u is above a certain threshold. Standard argu-
ments then imply that the minimizer is a smooth soliton solution,
see Corollary 4.2. We note that H in (u, ψ) ∈ H1

× H1, with the
L2−norm of u fixed, is not bounded below, see Lemma 4.1. This
problem can be overcome by adding a pointwise restriction on
ψ . The trigonometric form of the nonlinearity allows us to seek
minimizers away from this constraint, see Lemma 4.2, and we
also use radial symmetrization and rearrangements to reduce the
problem to the radial case, Proposition 4.1. The existence of the
minimizer also requires the existence of negative energy configu-
rations. The energy estimates are similar to the ones for (1.2) [4],
and lead to the assumption on L2−norm of u, see Proposition 4.2.
The existence of minimizers then follows from standard direct
method arguments applied to radial configurations.

The minimization proof in Section 4 implies that if the
L2-norm of u is sufficiently small then the infimum of the Hamil-
tonian H is not attained. Proposition 3.3 of Section 3 on the decay
of solutions for u0 of sufficiently small L2−norm also implies the
nonexistence of solitons. This result is similar to what we see for
the systems (1.2) [4] and (1.3) [10] obtained under a small angle
ψ assumption.

The paper is organized as follows. In Section 2 we show the
existence of unique solutions for the director equation,
Proposition 2.1, and the bound on θ , Corollary 2.1. In Section 3
we show local and global well-posedness for the initial value
problem, Theorems 3.1, 3.2 and decay for small L2−norm initial
conditions, Proposition 3.3. In Section 4 we show the existence
of constrained minimizers for the Hamiltonian, implying the
existence of radially symmetric optical solitons, Proposition 4.3.
In Section 5 we briefly discuss our results.

2. Solution of the director angle equation

The main result of this section is Proposition 2.1 on the exis-
tence of solutions to (1.1b), that can be written as

− ν∇2ψ = N(u, ψ) (2.1)

where N is given by

N(u, ψ) =
1
2
(E2

0 + |u|2) sin(2(ψ + θ0)) −
1
2
E2
0 sin(2θ0) (2.2)

with θ0 ∈ (π/4, π/2) constant.
We see that N(u, .) is decreasing on the interval [π/4 −

θ0, 3π/4 − θ0] ⊂ [−π/4, π/2]. Also,

N(u, ψ) =
1
2
E2
0 (sin(2(ψ + θ0)) − sin(2θ0))+

1
2

|u|2 sin(2(ψ+ θ0))

(2.3)

implies

N(u, ψ) ≤ E2
0 cos(2θ0)ψ +

1
2

|u|2 , (2.4)

for all ψ ∈ [0, π/2 − θ0], and u ∈ C.
Note that from (2.4), we have |N(u, ψ)| ≤ C

(
|ψ | + |u|2

)
, and

therefore N is a Nemytskii operator for u ∈ L4(R2).
The proof of Proposition 2.1 uses a global continuation argu-

ment, and we will need to show that once a solution ψ exists for a
given u it also satisfies some additional properties that allow us to
find a unique solution for a nearby u. These properties are shown
in the lemmas below. Lemma 2.1 and Corollary 2.1 establish the
range of ψ , especially an upper bound that is independent of u.
Lemma 2.2 shows how the range of ψ implies the monotonicity
of the nonlinearity N of (2.2) as a function of ψ .
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We will use the following facts. Given v ∈ L2(R2), we define
v+

= max (v, 0) and v−
= max (−v, 0). Then

v±
2
L2 =

±⟨v, v±
⟩, ⟨v+, v−

⟩ = 0 and ∥v∥2
L2 =

v+
2
L2 +

v−
2
L2 . If v ∈

H1(R2), then v±
∈ H1(R2). Moreover

∇v±
2
L2 = ±⟨∇v,∇v±

⟩,
⟨∇v+,∇v−

⟩ = 0 and ∥∇v∥2
L2 =

∇v+
2
L2 +

∇v−
2
L2 .

Lemma 2.1. Given u ∈ L4(R2), Eq. (1.1b) has at most one solution
ψ ∈ H2(R2) satisfying 0 ≤ ψ(x) ≤ π/4 for all x ∈ R2.

Proof. Let ψ1, ψ2 ∈ H2(R2) be solutions of (1.1b) taking values in
the interval [0, π/4] ⊂ [π/4−θ0, 3π/4−θ0]. These solutions are
also in C0(R2) by the Sobolev inequalities. By (2.1) their difference
satisfies

− ν∇2 (ψ1 − ψ2) = N(x, ψ1) − N(x, ψ2), (2.5)

and since N(x, .) is decreasing in [0, π/4], we also have

(N(x, ψ1) − N(x, ψ2)) (ψ1 − ψ2)
+

≤ 0,

a.e. in R2. Multiplying (2.5) by (ψ1 − ψ2)+ and integrating we
therefore have∇ (ψ1 − ψ2)

+
2
L2 ≤ 0.

Interchanging ψ1 and ψ2, we similarly have
∇ (ψ2 − ψ1)

+
2
L2 ≤

0. From the decomposition ∇ (ψ1 − ψ2) = ∇ (ψ1 − ψ2)
+

−

∇ (ψ2 − ψ1)
+, it follows that ∇ (ψ1 − ψ2) = 0 a.e. in R2. Since

ψ1, ψ2 are continuous and decay at infinity, C0(R2), we obtain
ψ1 ≡ ψ2. □

Lemma 2.2. Consider u ∈ L4(R2) and let ψ ∈ H2(R2) be a
corresponding solution of (1.1b) that also satisfies π/2 − 2θ0 ≤

ψ(x) ≤ π − θ0, for all x ∈ R2. Then 0 ≤ ψ(x) ≤ π/4, for all
x ∈ R2.

Proof. By (2.3), π/2−2θ0 ≤ ψ ≤ 0 implies N(x, ψ) ≥ 0, therefore
N(x, ψ)ψ−

≥ 0 a.e. in R2. Multiplying (2.1) by ψ−, integrating
and using ∇ψ · ∇ψ−

= −
⏐⏐∇ψ−

⏐⏐2 we have

−ν

∫
R2

⏐⏐∇ψ−
⏐⏐2 dx =

∫
R2

N(x, ψ)ψ− dx ≥ 0.

It follows that ψ−
≡ 0.

For ψ ∈ [π/4, π − θ0], from (2.2) we have N(u, ψ) ≤ 0
and therefore N(x, ψ) (ψ − π/4)+ ≤ 0 a.e. in R2. Multiply-
ing (2.1) by (ψ − π/4)+, integrating and using ∇ (ψ − π/4) ·

∇ (ψ − π/4)+ =
⏐⏐∇ (ψ − π/4)+

⏐⏐2, we similarly obtain that (ψ−

π/4)+ is a constant and therefore (ψ − π/4)+ ≡ 0. □

Corollary 2.1. Let ψ be as in Lemma 2.2, with u ∈ L4(R2)∩L∞(R2).
Then 0 ≤ ψ(x) ≤ ψmax < π/2 − θ0 < π/4, for all x ∈ R2, where

ψmax =
π

2
− θ0 −

1
2
arcsin

(
E2
0 sin(2θ0)

E2
0 + ∥u∥2

∞

)
. (2.6)

Proof. Consider u ∈ L4(R2) ∩ L∞(R2) and define ψmax as in
(2.6). We observe that 0 < E2

0 sin(2θ0) < E2
0 + |u(x)|2, therefore

ψmax ∈ (π/4 − θ0, π/2 − θ0) ⊂ (−π/4, π/4). Let ψ be a solution
of (2.1) as in the hypothesis. We need to show that ψ(x) ≤ ψmax,
for all x ∈ R2. By (2.2), N(u(x), ψ(x)) ≤ 0 is equivalent to

π

2
− θ0 −

1
2
arcsin

(
E2
0 sin(2θ0)

E2
0 + |u(x)|2

)
≤ ψ(x).

Since arcsin is increasing,

π

2
− θ0 −

1
2
arcsin

(
E2
0 sin(2θ0)

E2
0 + |u(x)|2

)
<
π

2
− θ0 −

1
2
arcsin

(
E2
0 sin(2θ0)

E2
0 + ∥u∥2

∞

)
.

Thus if ψmax ≤ ψ(x) ≤ π/4, then N(u(x), ψ(x)) ≤ 0 and
therefore we have that N(x, ψ) (ψ − ψmax)

+
≤ 0 a.e. in R2.

Multiplying (2.1) by (ψ − ψmax)
+ and arguing as in Lemma 2.2,

we see that (ψ − ψmax)
+

≡ 0. □

Lemma 2.3. There exists a constant Cθ0,E0 > 0 such that if ψ ∈

H2(R2) is a solution of (1.1b) and satisfies 0 ≤ ψ(x) < π/2 − θ0,
for all x ∈ R2, then ∥ψ∥H2 ≤ Cθ0,E0 ∥u∥2

L4 .

Proof. Multiplying (1.1b) by ψ , integrating, using the assumption
ψ ∈ [0, π/2 − θ0) and inequality (2.4) we obtain

ν ∥∇ψ∥
2
L2 ≤ E2

0 cos(2θ0) ∥ψ∥
2
L2 +

1
2

∫
R2

|u|2 ψ dx.

If we define α = −E2
0 cos(2θ0) > 0, using the Cauchy–Schwarz

and Young inequalities with ε2 = α/2, this implies

ν ∥∇ψ∥
2
L2 +

α

2
∥ψ∥

2
L2 ≤

1
2α

∥u∥4
L4 . (2.7)

By (2.1), (2.3), (2.4) we also have∇
2ψ


L2 ≤ E2

0 ∥ψ∥L2 +
1
2

∥u∥2
L4 ≤

(
E2
0

α
+

1
2

)
∥u∥2

L4 . (2.8)

The lemma follows from (2.7) and (2.8). □

In order to solve (1.1b) we use the following definition. Let X
be a Banach space, and consider a map F : X × H2(R2) → L2(R2)
that satisfies F (u, 0) = 0 and is continuous in a neighborhood
of (u, 0). Then we will consider the property that for any ε > 0,
there exists a neighborhood V ⊂ X × H2(R2) of (u, 0) for which

∥F (w,ψ1) − F (w,ψ2)∥L2 ≤ ε ∥ψ1 − ψ2∥H2 , (2.9)

for all (w,ψ1) , (w,ψ2) ∈ V .
Property (2.9) combines Lipschitz continuity and superlinear-

ity for the second component of F near (u, 0). In Lemma 2.5
we will see that (2.9) implies the existence of a unique solution
ψ(w) of −∇

2ψ + Vψ = F (w,ψ) near (u, 0), V as in Lemma 2.4.
Continuity of F in the first component makes ψ continuous in w.
This setup will be then used to solve (1.1b). Lemmas 2.4, 2.5 are
shown in [4].

Lemma 2.4. Let V ∈ L∞(R2), with V ≥ 0 and lim inf|x|→∞ V (x) ≥

a > 0. Then −∇
2ψ+Vψ = f with f ∈ L2(R2) has a unique solution

ψ ∈ H2(R2). Moreover, there exists a constant K = K (V ) > 0 such
that ∥ψ∥H2 ≤ K ∥f ∥L2 .

Lemma 2.5. Let X be a Banach space and consider a map F :

X × H2(R2) → L2(R2). Assume that V satisfies the conditions of
Lemma 2.4 and that F is continuous in a neighborhood of (u, 0) and
satisfies (2.9) at (u, 0). Then there exists a neighborhood U ⊂ X of
u and δ > 0 such that for any w ∈ U the equation −∇

2ψ +Vψ =

F (w,ψ) has a unique solution ψ ∈ H2
(
R2

)
with ∥ψ∥H2 < δ.

Furthermore, the map w ↦→ ψ from X to H2(R2) is continuous
in U .

The existence of solutions (1.1b) is shown in Proposition 2.1,
using a continuation idea and the setup of Lemma 2.5. We will
use technical Lemmas 2.6, 2.7 on property (2.9) for the nonlinear
terms, see [4] for proofs.
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Remark 2.1. Suppose F1, F2 : X × H2(R2) → L2(R2) satisfy
(2.9) at u. Then for A1, A2 bounded operators in L2(R2), the map
F = A1F1 + A2F2 : X × H2(R2) → L2(R2) is continuous in a
neighborhood of (u, 0) and satisfies property (2.9) at (u, 0).

Lemma 2.6. Let α ∈ C1(R), u ∈ L4(R2) and define F : L4(R2) ×

H2(R2) → L2(R2) by F (w,ψ) =
(
|w|

2
− |u|2

)
α(ψ). Then F is

continuous in a neighborhood of (u, 0) and satisfies property (2.9)
at (u, 0).

Lemma 2.7. Let u ∈ L4(R2) and define F : L4(R2) × H2(R2) →

L2(R2) by F (w,ψ) = G(ψ), and G(ψ) = (h1 + h2|u|2)β(ψ), where
h1, h2 ∈ L∞(R2), and β ∈ C1(R) with β(0) = 0, β ′(0) = 0.
Then F (w,ψ) = G(ψ) is continuous in a neighborhood of (u, 0) and
satisfies (2.9) at (u, 0).

Proposition 2.1. Let u ∈ L4(R2) ∩ L∞(R2), then there exists a
unique solution ψ ∈ H2(R2) of (1.1b) satisfying 0 ≤ ψ(x) <
π/2 − θ0, for all x ∈ R2. Furthermore ∥ψ∥H2 ≤ C ∥u∥2

L4 .

Proof. Let U ⊂ L4(R2) ∩ L∞(R2) be the set of functions u for
which there exists a solution ψ ∈ H2(R2) of (1.1b), with the
property that 0 ≤ ψ < π/2−θ0 everywhere in R2. We will prove
that U is a nonempty open and closed subset of L4(R2)∩ L∞(R2).
Uniqueness and the bound on ∥ψ∥H2 would then follow from
Lemmas 2.1, 2.3 respectively.

The set U is nonempty since u = 0 ∈ U , with ψ = 0.
We will prove that U is closed. Let {un}N ⊂ U be a sequence
that converges to u in L4(R2). By Lemma 2.3 we see that the
corresponding sequence of solutions {ψn}N of (1.1b) is bounded
in H2(R2). Then there exist ψ ∈ H2(R2) and a subsequence that
converges weakly to ψ in H2(R2). Since for any given compact set
Ω ⊂ R2, H2(Ω) is compactly embedded in C(Ω), using a diagonal
argument for a nested sequence of compact sets, we can conclude
that there exists a subsequence of {ψn}N that converges uniformly
to ψ in any compact set in R2. Thus for any ϕ ∈ C∞

0 (R2) we
have limn→∞⟨∇

2ψn, ϕ⟩ = ⟨∇
2ψ, ϕ⟩ and that sin(2ψn)ϕ converge

uniformly to sin(2ψ)ϕ. It follows that ψ is a solution of (1.1b)
corresponding to u. Since the ψn converge pointwise to ψ , we
also have 0 ≤ ψ ≤ π/2− θ0 in R2. From Corollary 2.1 we deduce
that 0 ≤ ψ < π/2 − θ0 in R2, which implies U is closed.

To see that U is open, it is enough to consider u0 ∈ U and the
corresponding solution ψ0 of (1.1b), and prove that there exists
δ > 0 such that if v ∈ L4(R2) ∩ L∞(R2) with ∥v∥L4∩L∞ < δ then
u0+v ∈ U . Assume that the solution for u0+v of (1.1b) is written
as ψ0 + σ . Then σ must satisfy

−ν∇2σ = −ν∇2(σ + ψ0) + ν∇2ψ0

=
1
2

(
E2
0 + |u0 + v|2

)
sin(2(σ + ψ0 + θ0))

−
1
2

(
E2
0 + |u0|

2) sin(2(ψ0 + θ0))

=
1
2

(
|u0 + v|2 − |u0|

2) sin(2(σ + ψ0 + θ0))

+
1
2

(
E2
0 + |u0|

2) (sin(2(σ + ψ0 + θ0)) − sin(2(ψ0 + θ0)))

=
1
2

(
|u0 + v|2 − |u0|

2) sin(2(σ + ψ0 + θ0))

+
1
2

(
E2
0 + |u0|

2) (cos(2(ψ0 + θ0)) sin(2σ )

+ sin(2(ψ0 + θ0))(cos(2σ ) − 1)) .

Therefore

− ν∇2σ +
(
E2
0 + |u0|

2) (− cos(2(ψ0 + θ0)))σ

=
1
2

(
|u0 + v|2 − |u0|

2) sin(2(σ + ψ0 + θ0))

+
1
2

(
E2
0 + |u0|

2) (cos(2(ψ0 + θ0))(sin(2σ ) − 2σ )

+ sin(2(ψ0 + θ0))(cos(2σ ) − 1)) ,

and then

−ν∇2σ + Vσ = F (u0 + v, σ ),

where V is the potential given by

V =
(
E2
0 + |u0|

2) (− cos(2(ψ0 + θ0))),

and

F (w, σ ) =
1
2

(
|w|

2
− |u0|

2) sin(2(σ + ψ0 + θ0))

+
1
2

(
E2
0 + |u0|

2) cos(2(ψ0 + θ0))(sin(2σ ) − 2σ )

+
1
2

(
E2
0 + |u0|

2) sin(2(ψ0 + θ0))(cos(2σ ) − 1)

We can see that V ∈ L∞(R2) and, since 0 ≤ ψ0 ≤ π/2−θ0, V ≥ 0.
As ψ0 ∈ H2(R2), we also have lim|x|→∞ ψ0(x) = 0, hence

lim inf
|x|→∞

V (x) ≥
1
2

|E0|2 (− cos(2θ0)) > 0.

Therefore V verifies the conditions of Lemma 2.4. By Lemmas 2.6,
2.7 and Remark 2.1, we see that F is continuous from L4(R2) ∩

L∞(R2) × H2(R2) to L2(R2) and verifies (2.9) at (u, 0). Using
Lemma 2.5, there exists r > 0 such that if ∥v∥L4 < r then
−∇

2σ + Vσ = F (u0 + v, σ ) has a unique solution σ ∈ H2(R2)
with ∥σ∥H2 ≤ δ. Taking r > 0 small enough, we can assume
|σ | < π/4 and then −π/4 < ψ0 + σ < 3π/4 − θ0 for all x ∈ R2.
Then Corollary 2.1 implies that 0 ≤ ψ0+σ < π/2−θ0 everywhere
R2. Thus U is open. Since U is closed, open and nonempty, we
conclude U = L4(R2) ∩ L∞(R2). □

3. Well-posedness of the evolution problem

We now consider the initial value problem for system (1.1),
written as

u(z) =W (z)u0 + iγ
∫ z

0
W (z − z ′)u(z ′)(sin2(ψ(z ′) + θ0)

− sin2(θ0))dz ′, (3.1a)

− ν∇2ψ =N(u, ψ), (3.1b)

where {W (z) : z ∈ R} is the unitary group in L2(R2) generated by
i
2∇

2, and N(u, ψ) is given by (2.2) with θ0 ∈ (π/4, π/2) constant.
The main results of this section are local existence of solutions

of (3.1) given in Theorem 3.1, global existence of solutions, shown
in Theorem 3.2, and decay for small initial conditions proved in
Proposition 3.3.

To show local existence we use the Banach space Yζ , ζ > 0,
defined by

Yζ =
{
u ∈ C([0, ζ ],H1(R2)) : ∇u ∈ L4([0, ζ ], L4(R2))

}
, (3.2)

with the norm

∥u∥Yζ = ∥u∥C([0,ζ ],H1(R2)) + ∥∇u∥L4([0,ζ ],L4(R2)). (3.3)

Also we will make repeated use of the Gagliardo–Nirenberg in-
equalities

∥v∥L∞ ≤ C ∥v∥
1/3
L2

∥∇v∥
2/3
L4
, (3.4)

∥v∥L4 ≤ C ∥v∥
1/2
L2

∥∇v∥
1/2
L2
. (3.5)

We note that for u ∈ Yz , for some z > 0, (3.4) and (3.5)
imply that u satisfies the conditions for solving the director
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equation a.e. in [0, z], following Proposition 2.1. The analysis of
the previous section is also used to prove suitable boundedness
and Lipschitz properties of the right hand side of (3.1a), shown in
Proposition 3.1, Lemmas 3.3 and 3.4.

We also recall the Strichartz estimates (see [9]). Let v be the
integral solution of the inhomogeneous problem i∂zv +

1
2∇

2v +

f = 0, v(0) = v0. Then v = h + g with

h(z) = W (z)v0, g(z) = i
∫ z

0
W (z − z ′)f (z ′)dz ′. (3.6)

Let 1 < r ≤ 2 ≤ p < ∞, q = 2p/(p − 2) and γ = 2r/(3r − 2).
Then there exist Cp, Cp,r > 0 such that

∥h∥Lq(I,Lp) ≤ Cp ∥u0∥L2 , (3.7)

∥g∥Lq(I,Lp) ≤ Cp,r ∥f ∥Lγ (I,Lr ) , (3.8)

for any interval I ⊂ R.
The local existence theorem uses the Strichartz estimates in

Lemmas 3.1, 3.2, where we see that ∥u∥Yζ can be controlled by
∥u(0)∥H1 .

Global existence uses the fact that the conservation of the
energy (Hamiltonian H) and the L2−norm of u imply a bound on
∥u∥H1 . The local solution can be therefore always extended to a
larger interval, see Theorem 3.2. Decay follows from Strichartz
estimates for z on the half-line, see Proposition 3.2.

Proposition 3.1. The map Ψ : H1(R2)∩L∞(R2) → H2(R2) defined
by Ψ (u) = ψ , where ψ is the solution of (3.1b) satisfies

∥Ψ (u1) − Ψ (u2)∥H2 ≤ Cν,θ0,E0
(
∥u1∥H1 , ∥u2∥H1

)
× (1 + ∥u1∥

2
L∞ + ∥u2∥

2
L∞ )

× ∥u1 − u2∥H1 ,

(3.9)

and is therefore locally Lipschitz continuous.

Proof. Let u1, u2 ∈ H1(R2) ∩ L∞(R2), with R = max{∥u1∥H1∩L∞ ,
∥u2∥H1∩L∞}, and let ψ1, ψ2 ∈ H2(R2) be their respective solutions
of (3.1b), as in Proposition 2.1. By Corollary 2.1, we see that
0 ≤ ψ1(x), ψ2(x) < π/2 − θ0, for all x ∈ R2. We then have

(sin(2(ψ1 + θ0)) − sin(2(ψ2 + θ0)))(ψ1 − ψ2)

≤ 2 cos(2θ0)(ψ1 − ψ2)2,
(3.10)

by the mean value theorem. Also, the difference between two
solutions of (3.1a) satisfies

−ν∇2 (ψ1 − ψ2) =
1
2
E2
0 (sin(2(ψ1 + θ0)) − sin(2(ψ2 + θ0)))

+
1
2

|u1|
2 (sin(2(ψ1 + θ0)) − sin(2(ψ2 + θ0)))

+
1
2

(
|u1|

2
− |u2|

2) sin(2(ψ2 − θ0)),

(3.11)

so that multiplying by ψ1−ψ2 and integrating by parts, we obtain

ν

∫
R2

|∇(ψ1 − ψ2)|2 dx =
1
2
E2
0

∫
R2
(sin(2(ψ1 + θ0))

− sin(2(ψ2) + θ0)) (ψ1 − ψ2) dx

+
1
2

∫
R2

|u1|
2 (sin(2(ψ1 + θ0))

− sin(2(ψ2 + θ0))) (ψ1 − ψ2) dx

+
1
2

∫
R2

(
|u1|

2
− |u2|

2) sin(2(ψ2 + θ0))

× (ψ1 − ψ2) dx.

(3.12)

To estimate the right-hand side of (3.12), we use (3.10) and
that ψ1, ψ2 ∈ [0, π/2− θ0) where sin(2(ψ+ θ0)) is decreasing, to
see that∫
R2
(sin(2(ψ1 + θ0)) − sin(2(ψ2) + θ0)) (ψ1 − ψ2) dx

≤ 2 cos(2θ0) ∥ψ1 − ψ2∥
2
L2 . (3.13)

Also, since sin(2(ψ+θ0)) is decreasing in the interval [0, π/2−θ0],
we see that∫

R2
|u1|

2 (sin(2(ψ1 + θ0)) − sin(2(ψ2 + θ0))) (ψ1 − ψ2) dx ≤ 0.

(3.14)

To estimate the third integral in (3.12) we use Hölder’s inequality
to see that∫

R2

(
|u1|

2
− |u2|

2) sin(2(ψ2 + θ0)) (ψ1 − ψ2) dx

≤
(
∥u1∥L4 + ∥u2∥L4

)
∥u1 − u2∥L4

× ∥ψ1 − ψ2∥L2 .

(3.15)

Letting α = −E2
0 cos(2θ0) > 0 and using (3.12)–(3.15) and the

Gagliardo–Nirenberg inequality (3.5) we have

ν ∥∇(ψ1 − ψ2)∥2
L2 +

α

2
∥(ψ1 − ψ2)∥

2
L2

≤
1
8α

C
(
∥u1∥H1 + ∥u2∥H1

)2
∥u1 − u2∥

2
L4 ,

and therefore

∥∇(ψ1 − ψ2)∥2
L2 ≤

1
8αν

C
(
∥u1∥H1 + ∥u2∥H1

)2
∥u1 − u2∥

2
L4 ,

(3.16)

∥(ψ1 − ψ2)∥
2
L2 ≤

1
4α2 C

(
∥u1∥H1 + ∥u2∥H1

)2
∥u1 − u2∥

2
L4 . (3.17)

Therefore we obtain

∥ψ1 − ψ2∥H1 ≤ Cν,θ0,E0
(
∥u1∥H1 + ∥u2∥H1

)
∥u1 − u2∥L4 . (3.18)

To obtain a Lipschitz estimate for ∥ψ1 − ψ2∥H2 we will use
Eq. (3.1b) for the ψj, to get

ν
⏐⏐∇2(ψ1 − ψ2)

⏐⏐ ≤ E2
0 |ψ1 − ψ2| + |u1|

2
|ψ1 − ψ2|

+
1
2
(|u1| + |u2|) |u1 − u2| .

(3.19)

Using (3.17) it then follows that∇
2(ψ1 − ψ2)


L2 ≤ Cν,θ0,E0

(
∥u1∥H1 + ∥u2∥H1

)
× (1 + ∥u1∥

2
L∞ + ∥u2∥

2
L∞ )

× ∥u1 − u2∥L4 .

(3.20)

Combining the above inequality, (3.18) and Gagliardo–Nirenberg
(3.5), we obtain the estimate (3.9). □

The following two lemmas follow from the Strichartz esti-
mates.

Lemma 3.1. Let f ∈ L1([0, ζ ],H1(R2)), and define g by

g(z) = i
∫ z

0
W (z − z ′)f (z ′)dz ′.

Then g ∈ Yζ and satisfies ∥g∥Yζ ≤ C1,2 ∥f ∥L1([0,ζ ],H1).

Proof. Since W (z) is a unitary operator, we have ∥g∥C([0,ζ ],H1) ≤

∥f ∥L1([0,ζ ],H1(R2)). Using

∇g(z) = i
∫ z

0
W (z − z ′)∇f (z ′)dz ′,
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and the second Strichartz inequality (3.7) with p = q = 4,
γ = 1, r = 2, we have ∥∇g∥L4([0,ζ ],L4) ≤ C1,2 ∥∇f ∥L1([0,ζ ],L2). The
statement then follows immediately from the definition of Yζ . □

Lemma 3.2. Let u0 ∈ H1(R2), and h(z) = W (z)u0. Then ∥h∥Yζ ≤

C4 ∥u0∥H1(R2).

Proof. The statement follows from the first Strichartz estimate
(3.7) with p = q = 4, and the fact that z ↦→ h(z) ∈

C([0, ζ ];H1). □

To show the existence of local solutions we will use the Picard
iteration on (u, ψ(u)) in Yζ × L∞([0, ζ ],H2(R2)). We first show
boundedness and Lipschitz continuity of the nonlinear part of
(3.1a) in Yζ , Lemmas 3.3, 3.4 respectively.

Lemma 3.3. Let B be the map defined by

B(u) = u
(
sin2(2(ψ(u) + θ0)) − sin2(2θ0)

)
,

where ψ(u) is a solution of (3.1b). Then B is bounded from Yζ to
L1([0, ζ ],H1(R2)). Moreover for any R > 0 there exists C > 0 such
that u ∈ Yζ and ∥u∥Yζ ≤ R imply ∥B(u)∥L1([0,ζ ],H1(R2)) ≤ C ζ ∥u∥Yζ .

Proof. By Proposition 2.1, and the Gagliardo–Nirenberg inequali-
ties (3.4), (3.5), if u ∈ Yζ then the solution ψ(u(z)) of the director
equation (3.1b) exists and is in H2, a.e. in [0, ζ ]. The map B is
therefore well defined in Yζ . The following observations apply to
u = u(z), ψ(u) = ψ(u(z)) for almost all z ∈ [0, ζ ]. First, by⏐⏐sin2(2(ψ + θ0)) − sin2(2θ0)

⏐⏐ ≤ 2 we have ∥B(u)∥L2 ≤ 2 ∥u∥L2 .
Also, by

∇B(u) = ∇u
(
sin2(2(ψ(u) + θ0)) − sin2(2θ0)

)
+ 4u sin(2(ψ(u) + θ0)) cos(2(ψ(u) + θ0))∇ψ(u),

Lemma 2.3, and Gagliardo–Nirenberg (3.5), we have

∥∇B(u)∥L2 ≤ 2 ∥∇u∥L2 + 4 ∥u∥L4 ∥∇ψ∥L4

≤ 2 ∥∇u∥L2 + C ∥u∥L4 ∥ψ∥H2

≤ C̃(∥∇u∥L2 + ∥u∥3
L4 ) ≤ C̃(∥u∥H1 + ∥u∥3

H1 ).
(3.21)

The result follows by integration over [0, ζ ]. □

Lemma 3.4. The map B : Yζ → L1([0, ζ ],H1(R2)) defined in
Lemma 3.3 is locally Lipschitz, i.e. for any R > 0 there exists C > 0
such that u1, u2 ∈ Yζ and ∥u1∥Yζ , ∥u2∥Yζ ≤ R imply

∥B(u1) − B(u2)∥L1([0,ζ ],H1(R2)) ≤ C (ζ + ζ 2/3) ∥u1 − u2∥C([0,ζ ],H1) .

(3.22)

Proof. Let u1, u2 ∈ Yζ with ∥u1∥Yζ , ∥u2∥Yζ ≤ R. We use
the notation of the previous lemma to establish some pointwise
estimates, for almost all z in [0, ζ ].

|B(u1) − B(u2)| ≤ 2 |u1 − u2| + 4 |u2| |ψ1 − ψ2| ,

with ψj = Ψ (uj). Therefore

∥B(u1) − B(u2)∥L2 ≤ C(∥u1 − u2∥L2 + ∥u2∥L4 ∥ψ1 − ψ2∥L4 )

≤ C(∥u1 − u2∥H1 + ∥u2∥H1 ∥ψ1 − ψ2∥H1 ).

(3.23)

On the other hand, it is easy to see that

|∇B(u1) − ∇B(u2)| ≤ 2 |∇(u1 − u2)| + 4 |∇u2| |ψ1 − ψ2|

+ 4 |u1 − u2| |∇ψ1| + 4 |u2| |∇ψ2 − ∇ψ1|

+ 16 |u2| |ψ2 − ψ1| |∇ψ2|

= I1 + I2 + I3 + I4 + I5.

(3.24)

From the embeddings H1(R2) ↪→ L4(R2) and H2(R2) ↪→

L∞(R2), we estimate each term as

∥I1∥L2 ≤ ∥∇(u1 − u2)∥L2 ≤ ∥u1 − u2∥H1 ,

∥I2∥L2 ≤ C ∥∇u2∥L2 ∥ψ1 − ψ2∥L∞ ≤ C ∥u2∥H1 ∥ψ1 − ψ2∥H2 ,

∥I3∥L2 ≤ C ∥∇ψ1∥L4 ∥u1 − u2∥L4 ≤ C ∥ψ1∥H2 ∥u1 − u2∥H1 ,

∥I4∥L2 ≤ C ∥u2∥L4 ∥∇ψ2 − ∇ψ1∥L4 ≤ C ∥u2∥H1 ∥ψ2 − ψ1∥H2 ,

∥I5∥L2 ≤ C ∥u2∥L4 ∥∇ψ2∥L4 ∥ψ2 − ψ1∥L∞

≤ C ∥u2∥H1 ∥ψ2∥H2 ∥ψ2 − ψ1∥H2 .

(3.25)

From Lemma 2.3 we also have
ψj


H2 ≤ C

uj
2
H1 . Thus,

Proposition 3.1, the Gagliardo–Nirenberg inequality (3.4), and
(3.23)–(3.25) imply that

∥B(u1) − B(u2)∥H1 ≤ C(R)(1+∥∇u1∥
4/3
L4

+∥∇u2∥
4/3
L4

) ∥u1 − u2∥H1 .

Integrating over [0, ζ ], we obtain

∥B(u1) − B(u2)∥L1([0,ζ ],H1) ≤ C(R) ∥u1 − u2∥C([0,ζ ],H1)

×

∫ ζ

0
(1 + ∥∇u1∥

4/3
L4

+ ∥∇u2∥
4/3
L4

) dz,

and using Hölder’s inequality we finally have

∥B(u1) − B(u2)∥L1([0,ζ ],H1) ≤ C
(
ζ + ζ 2/3

)
∥u1 − u2∥C([0,ζ ],H1) .

for some constant C that depends on R, as stated. □

We now show the existence of local solutions of the evolution
equation (3.1).

Theorem 3.1. Given u0 ∈ H1(R2), there exist ζ = ζ
(
∥u0∥H1

)
> 0

and a unique (u, ψ) ∈ Yζ × L∞([0, ζ ],H2(R2)) that satisfies (3.1)
and ψ ∈ [0, π/4]. Furthermore, the map u0 ↦→ u is continuous from
H1(R2) to Yζ .

Proof. From Lemmas 3.1, 3.2 and 3.3, the map Γ defined in Yζ
by

(Γ u) (z) = W (z) u0 + i
∫ z

0
W (z − z ′)B

(
u
(
z ′

))
dz ′, z ∈ [0, ζ ],

(3.26)

satisfies Γ u ∈ Yζ . (The dependence of Γ on u0 is not made
explicit in this notation.) By Lemma 2.3, we also have that u ∈ Yζ
implies ψ = Ψ (u) ∈ L∞([0, ζ ],H2(R2)). Define h ∈ Yζ by h(z) =

W (z) u0, z ∈ [0, ζ ], and consider the closed ball Bh(R) ⊂ Yζ that
is centered at h and has radius R > 0. Using Lemmas 3.1, 3.3 we
see that if ζ is sufficiently small then

∥Γ u − h∥Yζ ≤ C(∥h∥Yζ + R)ζ ≤ R. (3.27)

Thus Γ maps the closed ball to its interior. To complete the
argument we will prove that Γ is a contraction in Bh(R). Then
it will have a unique fixed point in Bh(R).
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Let u1, u2 ∈ Yζ . Then for 0 ≤ z ≤ ζ

(Γ u1) (z)− (Γ u2) (z) = i
∫ z

0
W (z − z ′)

(
B
(
u1

(
z ′

))
−B

(
u2

(
z ′

)))
dz ′, (3.28)

and by Lemmas 3.1, 3.4 we have

∥Γ (u1) − Γ (u2)∥Yζ ≤ C ∥B (u1)− B (u2)∥L1([0,ζ ],H1)

≤ C (R) (ζ + ζ 2/3) ∥u1 − u2∥Yζ .
(3.29)

Thus taking ζ such that C (R) (ζ + ζ 2/3) < 1 we see that Γ is a
contraction in Bh(R).

To see the continuity on the initial conditions, we consider
solutions uj, with respective initial conditions vj, j = 1, 2. We
use the notation Γvj (uj) for the map Γ of (3.26). By uj = Γvj (uj)
we can immediately combine (3.29) and Lemma 3.2 to see that
for ζ sufficiently small we have ∥u1 − u2∥Yζ ≤ C ∥v1 − v2∥H1 , as
required. □

The global existence uses the conservation of the L2−norm of
u, and of the Hamiltonian H of the coupled system, given by

H(u, ψ) =
1
4

∫
R2

(
|∇u|2 + ν|∇ψ |

2
+ γ E2

0

(
sin2(θ0)

− sin2(θ0 + ψ) + sin(2θ0)ψ
)

− γ
(
sin2(θ0 + ψ) − sin2(θ0)

)
|u|2

)
dx.

(3.30)

Define the function

h(ψ) = sin2(θ0) − sin2(θ0 + ψ) + sin(2θ0)ψ, (3.31)

with π/4 < θ0 < π/2. We check that if ψ ≥ 0, then

h(ψ) ≥ sin2(θ0) − sin2(θ0 + ψ) +
1
2
sin(2θ0) sin(2ψ)

= 2 sin
(
θ0 −

π

4

)
sin

(
θ0 +

π

4

)
sin2(ψ) ≥ 0.

(3.32)

Then by (3.30) we have
1
4

∫
R2

|∇u|2dx ≤ H +
1
4
γ

∫
R2

(
sin2(θ0 + ψ) − sin2(θ0)

)
|u|2dx

≤ H +
1
4
γ ∥u∥2

L2

and therefore ∥u∥H1 should remain bounded for all time.
The above result of local existence, and the conservation of

energy (3.30), leads to the following global existence statement.

Theorem 3.2 (Global Existence). Given u0 ∈ H1(R2), there exists
a unique (u, ψ) ∈ C(R,H1(R2)) × L∞(R,H2(R2)) such that ψ ∈

[0, π/4] and ∇u ∈ L4loc(R, L
4(R2)) solution of (1.1).

Proof. To obtain global existence we use smoother solutions
(u, ψ) and the continuous dependence. Given u ∈ H2(R2), we
use the fact that H2(R2) is a Banach algebra, and the argument of
Proposition 3.1, to prove that Ψ (u) ∈ H4(R2). Moreover, we use
the argument of Theorem 3.1 to see that for u0 ∈ H2(R2) we have
the local solution (u, ψ) ∈ C([0, ζ ],H2(R2)) × L∞([0, ζ ],H4(R)),
with u ∈ C1([0, ζ ], L2(R2)). Considering such (u, ψ), we use the
explicit form of the energy in (3.30), to see that

H(u, ψ) ≥
1
4

∥∇u∥2
L2 −

γ

4
∥u∥2

L2 ,

and therefore

∥u∥2
H1 ≤ 4H(u, ψ) + (1 + γ ) ∥u∥2

L2 , (3.33)

where the right side is a constant depending on ∥u0∥H1 . From
continuous dependence on initial data, we obtain an a priori
bound for ∥u∥2

H1 . Now, by an usual prolongation argument we can
assert that u is defined on R. □

We conclude this section showing that if ∥u0∥L2 is sufficiently
small, then the solution of (3.1) satisfies u ∈ L4(R, L4(R2)). As a
consequence the soliton solutions considered in the next section
cannot have arbitrarily small L2−norm.

Proposition 3.2. There exists C > 0 such that if (u, ψ) ∈ Yζ ×

L∞([0, ζ ],H2) is the solution of (3.1), then

∥u∥L4([0,ζ ],L4) ≤ C ∥u0∥L2 + C ∥u∥3
L4([0,ζ ],L4) . (3.34)

Proof. The solution u of (3.1a) satisfies

u(z) = W (z)u0 + iγ
∫ z

0
W (z − z ′)u(z ′)(sin2(θ0 + ψ(z ′))

− sin2(θ0))dz ′
= h(z) + g(z).

We have sin2(θ0 + ψ) − sin2(θ0) = sin 2(θ0 + χ )ψ ≤ ψ , where
χ ∈ [0, ψ], since ψ ∈ [0, π/4). Using the Strichartz estimates
(3.7) we then obtain

∥h∥L4([0,ζ ],L4) ≤ C4 ∥u0∥L2 ,

∥g∥L4([0,ζ ],L4) ≤ γ C4,4/3 ∥uψ∥L4/3([0,ζ ],L4/3) .
(3.35)

Then Hölder’s inequality, and ∥ψ∥L2 ≤ C̃ ∥u∥2
L4 from Lemma 2.3

yield

∥uψ∥
4/3
L4/3([0,ζ ],L4/3)

≤ C4/3
4,4/3

∫ ζ

0
∥u(z)∥4/3

L4
∥ψ(z)∥4/3

L2
dz

≤ C̃4/3C4/3
4,4/3

∫ ζ

0
∥u(z)∥4

L4 dz ≤ C ∥u∥4
L4([0,ζ ],L4) .

(3.36)

The statement follows immediately from (3.35), (3.36), with C
depending on C4,2, C4,4/3, and C̃ . □

Bound (3.34) for arbitrary ζ implies the decay statement, see
also [4]:

Proposition 3.3. There exists a0 > 0 such that if u0 ∈ H1(R2)
satisfies ∥u0∥L2 < a0, then the solution of (1.1) satisfies ∥u∥L4(R,L4)
< ∞.

4. Existence of ground states

In this section we show the existence of solutions (u, ψ) of
the stationary problem associated to the system (1.1). Using the
soliton ansatz u(x, z) = eiσ zv(x) with σ ∈ R and ψ(x, z) = φ(x),
Eqs. (1.1) become

0 = ∇
2v − 2σv + 2γ (sin2(θ0 + φ) − sin2(θ0)),

0 = ∇
2φ +

1
2ν

E2
0 (sin(2(θ0 + φ)) − sin(2θ0))

+
1
2ν

|v|2 sin(2(θ0 + φ)).

(4.1)

The idea is to look for solutions of (4.1) by minimizing the
Hamiltonian H(v, φ) of (3.30) over configurations (v, φ) ∈ H1

(R2) × H1(R2) with ∥v∥2
L2 fixed. These lowest energy configura-

tions may be termed ground state solitons.
Before stating the main result, we show however that H is not

bounded below. This fact motivates a modification of the mini-
mization problem. We formulate this precisely after the lemma.

In what follows we will use the fact that for θ0 ∈ (π/4, π/2),
the function h(ψ) defined in (3.31) is decreasing on the interval
(π/4 − θ0, 0], and we can therefore extend the inequality (3.32)
to (π/4 − θ0,+∞).
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Lemma 4.1. Let H be the Hamiltonian defined in (3.30) and let
u ∈ H1(R2). Then

inf
ψ∈H1

H(u, ψ) = −∞.

Proof. Consider u ∈ H1(R2) fixed, and the following function in
H1(R2)

φ(x) =

⎧⎨⎩
0, if ∥x∥ ≥ 2,
2 − ∥x∥, if 1 < ∥x∥ < 2,
1, if ∥x∥ ≤ 1.

(4.2)

We define the sequence of functions ψn(x) = −ψ∗φ(rnx), where
ψ∗ will be chosen large enough and so that h(−ψ∗) < 0, and
{rn}n∈N such that rn → 0. Using that ψn(x) = 0 for ∥x∥ ≥ 2/rn,
and h(0) = 0, we deduce that

H(u, ψn) ≤
1
4
∥∇u∥2

L2 +
γ

2
∥u∥2

L2 +
ν

4

∫
B(0,2/rn)

∥∇ψn(x)∥2dx (4.3)

+
γ E2

0

4

∫
B(0,2/rn)

h(ψn(x))dx.

We compute the third term of the right hand side as∫
B(0,2/rn)

∥∇ψn(x)∥2dx =

∫
B(0,2/rn)−B(0,1/rn)

∥∇ψn(x)∥2dx

= 3π (ψ∗)2.

Let −δ be such that if x < −δ, then h(x) < 0, and let M =

maxx∈[−δ,0] h(x). Then we estimate the fourth term on the right
hand side of (4.9) as∫
B(0,2/rn)

h(ψn(x))dx =

∫
B(0,1/rn)

h(−ψ∗)dx

+

∫
B(0,2/rn)\B(0,1/rn)

h(−ψ∗φ(rnx))dx

=
πh(−ψ∗)

r2n
dx

+

∫
B(0,(2−δ/ψ∗)/rn)\B(0,1/rn)

h(−ψ∗φ(rnx))dx

+

∫
B(0,2/rn)\B(0,(2−δ/ψ∗)/rn)

h(−ψ∗φ(rnx))dx

≤
πh(−ψ∗)

r2n
+ Mπ

4 − (2 − δ/ψ∗)2

r2n

< π
h(−ψ∗) + 3M

r2n
.

Then choosing ψ∗ large enough, we have that h(−ψ∗) + 3M < 0
and therefore H(u, ψn) → −∞. □

We see that the lack of a lower bound for H is due to the fact
that function h of (3.31) is unbounded below. On the other hand,
we observe that h can be bounded below by suitably restricting
the range of ψ .

Motivated by the above we define

Sa =
{
(v, φ) ∈ H1(R2) × H1(R2) : ∥v∥2

L2

= a, φ > π/4 − θ0 a.e.
}
, (4.4)

where H(v, φ) is given in (3.30), and the variational problem

Ja = inf
(v,φ)∈Sa

H(v, φ).

The main result of this section, Proposition 4.3, is the existence
of an element (v, φ) of Sa attaining the infimum Ja, provided a ≥ b
for some b > 0. We also show that the minimizers can be chosen

to be radially symmetric, decreasing and to satisfy v ≥ 0 and
φ ∈ [0, π/2− θ0] everywhere. By Corollary 4.2, an element (v, φ)
of Sa attaining Ja, a ≥ b, is a smooth solution of (4.1) for some
real σ .

We first observe that for (v, φ) ∈ Sa, H(v, φ) ≥ −
γ

4 a using
(3.32), and therefore Ja > −∞. Note that by θ0 ∈ (π/4, π/2),
π/4 − θ0 is strictly negative. Also, we have H(0, φ),H(v, 0) ≥ 0.

Let P be the function defined as follows:

P(φ) =

⎧⎪⎪⎨⎪⎪⎩
0, if φ ≤ 0,

φ, if 0 < φ <
π

2
− θ0,

π

2
− θ0, if φ ≥

π

2
− θ0.

Lemma 4.2. Let (v, φ) ∈ Sa. Then (|v| , P(φ)) ∈ Sa, and

H(|v| , P(φ)) ≤ H(v, φ).

Proof. First, |∇P(φ)| = |P ′(φ)||∇φ| ≤ |∇φ| implies ∥∇P(φ)∥L2 ≤

∥∇φ∥L2 . Also, |∇ |v|| ≤ |∇v| implies ∥∇ |v|∥L2 ≤ ∥∇v∥L2 .
For φ ∈ (π/4− θ0, 0], the inequality H(v, φ) ≥ H(v, 0) follows

from the fact that sin(θ0 + φ) ≤ sin(θ0) and using that h(φ) ≥ 0,
where h is the function defined in (3.31). For φ ∈ [0, π/2−θ0] the
inequality is immediate. Finally, for φ > π/2− θ0, the inequality
H(u, π/2 − θ0) ≤ H(u, φ) follows from

sin2(θ0) − 1 ≤ sin2(θ0) − sin2(θ0 + φ),

sin2(θ0) + sin(2θ0)(π/2 − θ0) − 1 ≤ sin2(θ0) + sin(2θ0)φ

− sin2(θ0 + φ). □

By Lemma 4.2 we can restrict our attention to functions (v, φ)
such that v ≥ 0 and 0 ≤ φ ≤ π/2− θ0 almost everywhere in R2.

Let ϕ : Rn
→ R+ be a measurable function such that

|{x ∈ Rn
: ϕ(x) > t}| < ∞ for any t > 0, and let ϕ∗ denote

the symmetric decreasing rearrangement of ϕ. We recall the
following lemma, see [15].

Lemma 4.3. Let f : R+ → R+ be an increasing continuous
function such that f (0) = 0, then for all ϕ : Rn

→ R+ measurable,
(f ◦ ϕ)∗ = f ◦ ϕ∗

Proposition 4.1. Let (v, φ) ∈ H1(R2) × H1(R2) with v ≥ 0 and
0 ≤ φ ≤ π/2 − θ0, a.e. in R2. Then H(v∗, φ∗) ≤ H(v, φ), where
v∗ and φ∗ are the symmetric decreasing rearrangements of v and φ
respectively.

Proof. Applying the Pólya-Szegö inequality, we have that
1
4

∇v∗
2
L2 +

ν

4

∇φ∗
2
L2 ≤

1
4

∥∇v∥2
L2 +

ν

4
∥∇φ∥

2
L2 . (4.5)

The functions h(φ), defined in (3.31), and sin2(θ0 + φ) − sin2(θ0)
are increasing and continuous on [0, π/2− θ0], and vanish at the
origin. Lemma 4.3 then implies (h(φ))∗ = h(φ∗) and (sin2(θ0 +

φ) − sin2(θ0))∗ = sin2(θ0 + φ∗) − sin2(θ0). The first equality
yields∫

R2
sin2(θ0) − sin2(θ0 + φ) + sin(2θ0)φdx

=

∫
R2

sin2(θ0) − sin2(θ0 + φ∗) + sin(2θ0)φ∗dx, (4.6)

while the second equality, and the product rearrangement in-
equality of [15], ch.3.4, imply∫

R2
v2(sin2(θ0 + φ) − sin2(θ0))dx ≤

∫
R2
(v2)∗(sin2(θ0 + φ)

− sin2(θ0))∗dx
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=

∫
R2
(v∗)2(sin2(θ0 + φ∗)

− sin2(θ0))dx. (4.7)

The conclusion follows immediately from (4.5)–(4.7). □

Proposition 4.2. There exists ã > 0 such that if 0 < a ≤ ã, then
Ja = 0. Also, there exists b > ã > 0 such that Ja < 0 for all a ≥ b.

Proof. We look for a lower bound of the Hamiltonian (3.30). By
π/4 < θ0 < π/2 and 0 ≤ φ ≤ π/2 − θ0 < π/4 we have that

h(φ) = sin2(θ0) − sin2(θ0 + φ) + sin(2θ0)φ ≥ − cos(2θ0)φ2 > 0,
(4.8)

therefore∫
R2

γ E2
0

4

(
sin2(θ0) − sin2(θ0 + φ) − sin(2θ0)φ

)
dx

≥
|cos(2θ0)|γ E2

0

4
∥φ∥

2
L2 > 0

From inequality (3.32), and 0 ≤ φ ≤ π/2 − θ0, we have
sin2(θ0 + φ) − sin2(θ0) ≤ 2 sin(2θ0)φ, therefore∫
R2
v2(sin2(θ0 + φ) − sin2(θ0))dx ≤

∫
R2
v2 sin(2θ0)φdx

≤ ∥v∥2
L4 ∥φ∥L2 ≤

1
2ε

∥v∥4
L4

+
ε

2
∥φ∥

2
L2 .

Thus, taking ε = 2E2
0 |cos(2θ0)|,

H(v, φ) ≥
1
4

∥∇v∥2
L2 +

ν

4
∥∇φ∥

2
L2 −

(
γ

16E2
0 |cos(2θ0)|

)
∥v∥4

L4 ,

so that by the Gagliardo–Nirenberg inequality (3.5), ∥v∥4
L4 ≤

C a ∥∇v∥2
L2 , we have Ja ≥ 0 if a ≤ ã =

4E20 |cos(2θ0)|
γ C .

Consider now some v ∈ H1(R2) with ∥v∥2
L2 = a, and let

uλ(x) = λv(λx). We have ∥uλ∥2
L2 = a and ∥∇uλ∥2

L2 = λ2 ∥∇vλ∥
2
L2 ,

therefore H(uλ, 0) = λ2H(v, 0) → 0 as λ → 0. We conclude that
Ja = 0 for a ≤ ã, proving the first statement.

To show the second statement, we use the fact that if φ ∈

[0, π/2 − θ0] then h(φ) ≤ 2φ2, and sin2(θ0 + φ) − sin2(θ0) ≥
cos2(θ0)
π/2−θ0

φ. Letting v = αφ, α ∈ R, we then have

H(αφ, φ) ≤
α2

+ ν

4
∥∇φ∥

2
L2 +

γ E2
0

2
∥φ∥

2
L2 −

γα2 cos2(θ0)
4(π/2 − θ0)

∥φ∥
3
L3

=
α2

+ ν

4

(
∥∇φ∥

2
L2 +

2γ E2
0

α2 + ν
∥φ∥

2
L2

−
γα2 cos2(θ0)

(α2 + ν)(π/2 − θ0)
∥φ∥

3
L3

)
.

(4.9)

Consider some φ1 ∈ H1(R2) satisfying φ1 ̸≡ 0, and 0 ≤ φ1 ≤

π/2 − θ0 everywhere, and let φλ(x) = φ1(λx). We have ∥φλ∥
2
L2 =

λ−2 ∥φ1∥
2
L2 , ∥φλ∥

3
L3 = λ−2 ∥φ1∥

3
L3 and ∥∇φλ∥

2
L2 = ∥∇φ1∥

2
L2 . Then,

for all α ∈ R, (4.9) implies

H(αφλ, φλ) ≤
α2

+ ν

4

(
∥∇φ1∥

2
L2 +

2γ E2
0λ

−2

α2 + ν
∥φ1∥

2
L2

−
γα2 cos2(θ0)λ−2

(α2 + ν)(π/2 − θ0)
∥φ1∥

3
L3

)
.

(4.10)

Fixing α >
(

2E20 (π/2−θ0)∥φ1∥2
L2

cos2(θ0)∥φ1∥
3
L3

)1/2

, we see from (4.10) that there

exists λ0 > 0 (depending on α, ∥∇φ1∥L2 ) such that 0 < λ < λ0

implies H(αφλ, φλ) < 0. On the other hand, ∥v∥2
=

α2

λ2
∥φ1∥

2
L2
,

therefore a ≥ b =
α2

λ20
∥φ1∥

2
L2

implies Ja < 0. □

We now use Proposition 4.2 to prove the existence of min-
imizers of the Hamiltonian (3.30) in Sa, assuming a is such that
Ja < 0. By Proposition 4.1 it is enough to look for these minimizers
in H1

rad(R
2) × H1

rad(R
2).

Proposition 4.3. Let a ≥ b > 0 with b as in 4.2. Then there exists
(v, φ) ∈ H1(R2) × H1(R2) that satisfies (v, φ) ∈ Sa, and H(v, φ) =

Ja. In addition, we may assume that (v, φ) ∈ H1
rad(R

2) × H1
rad(R

2),
are decreasing, and satisfy v ≥ 0 and φ ∈ [0, π/2−θ0] everywhere.

Proof. Let A = {(vn, φn)}n∈Z+ ⊂ Sa be a minimizing sequence for
H . By Lemma 4.2, and Proposition 4.1 we may assume that the
minimizing sequence A also belongs to H1

rad(R
2) × H1

rad(R
2), and

that its elements (vn, φn) satisfy vn ≥ 0, φn ∈ [0, π/2− θ0] a.e. in
R2, for all n ∈ Z+.

From (3.33), we obtain the following upper bound of the norm
H1 of vn :

∥vn∥
2
H1 ≤ sup

n
4H(vn, φn) + (1 + γ )a. (4.11)

Also, using the lower bound for h(φ) in (4.8), and sin2(θ0 + φn)−
sin2(θ0) ≤ 1 for φ ∈ [0, π/2 − θ0], we have that

H(vn, φn) ≥
ν

4
∥∇φn∥

2
L2 −

γ

4
∥vn∥

2
L2 +

(− cos(2θ0))γ E2
0

4
∥φn∥

2
L2

≥ −
γ

4
a +

1
4
min{ν,− cos(2θ0)γ E2

0 }∥φn∥
2
H1 ,

therefore, we obtain the following upper bound for the norm H1

of φn :

∥φn∥
2
H1 ≤ Cγ ,E0,ν,θ0

(
sup
n

4H(vn, φn) + γ a
)
. (4.12)

Then there exists a subsequence of A that is weakly conver-
gent to (v, φ) in H1

rad(R
2)×H1

rad(R
2). We denote this subsequence

also by A = {(un, φn)}n∈Z+ . Since H1
rad(R

2) is compactly embedded
in Lp(R2), for any 2 < p < ∞, see [9], the subsequence converges
strongly to (v, φ) ∈ L3(R2)× L3(R2). This implies that vn → v and
φn → φ a.e., therefore we may assume v ≥ 0, 0 ≤ φ ≤ π/2 − θ0
a.e. in R2.

To see that the limit is the minimizer, we use the weak
semi-continuity of the L2 norm to obtain

∥v∥2
L2 ≤ lim inf

n
∥vn∥

2
L2 = a, (4.13)

1
4

∥∇v∥2
L2 +

ν

4
∥∇φ∥

2
L2 ≤ lim inf

n

(
1
4

∥∇vn∥
2
L2 +

ν

4
∥∇φn∥

2
L2

)
.

(4.14)

Since the function h(φ) given in (3.31) is non-negative for φn ∈

[0, π/2 − θ0] we can apply Fatou’s lemma to the sequence h(φn)
to obtain∫

R2
h(φ)dx ≤ lim inf

n

∫
R2

h(φn)dx. (4.15)

Also, vn → v in L3(R2) implies v2n → v2 in L3/2(R2) and⏐⏐sin2(θ0 + φn) − sin2(θ0 + φ)
⏐⏐ ≤ |φn − φ| implies sin2(θ0 + φn)
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→ sin2(θ0 + φ) in L3(R2). Therefore

lim
n

∫
R2
v2n

(
sin2(θ0 + φn) − sin2(θ0)

)
dx

=

∫
R2
v2

(
sin2(θ0 + φ) − sin2(θ0)

)
dx. (4.16)

Collecting (4.14)–(4.16), we therefore have

H(v, φ) ≤ lim inf
n

H(un, φn) = Ja < 0. (4.17)

Using the fact that H(v, 0), H(0, φ) ≥ 0, we conclude that v ̸≡ 0
and φ ̸≡ 0, and moreover by (4.13) we have 0 < ∥v∥2

L2 ≤ a. Let
λ =

√
a/∥v∥L2 ≥ 1, we check that (λ v, φ) ∈ Sa, and that

Ja ≤ H(λ v, φ) ≤ λ2H(v, φ) ≤ λ2Ja ≤ Ja < 0. (4.18)

It follows that λ = 1. Therefore (v, φ) ∈ Sa, and H(v, φ) = Ja. □

The following statement is shown as in [4].

Corollary 4.1. There exists a0 > 0 such that Ja = 0 for 0 < a ≤ a0,
and Ja < 0 for a > a0. Moreover, the map a ↦→ Ja is decreasing in
(a0,∞).

We finally show that the minimizers of the proposition above
are smooth solutions of (4.1). The arguments are standard and we
only sketch the proof.

Corollary 4.2. Let (v∗, φ∗) ∈ H1
rad(R

2) × H1
rad(R

2), v∗
≥ 0 and

φ∗
∈ [0, π/2 − θ0] everywhere, be minimizer of H in Sa, a as in

Proposition 4.3. Then there exists σ ∈ R such that v∗, φ∗ satisfy
(4.1) in H−1

rad(R
2) × H−1

rad(R
2). Moreover, v∗, φ∗ are C2.

Proof. We easily see that H is differentiable in H1(R2)×H1(R2).
Let a as in Proposition 4.3. Considering variations in Sa of the
first component around (v∗, φ∗) we have the first equation (4.1)
in the dual space H−1(R2) for some real σ . We also consider
variations in Sa of the second component around (v∗, φ∗), for
instance φ∗

+ φ̃. Since the condition for (v∗, φ∗
+ φ̃) ∈ Sa requires

that φ∗
+ φ̃ > π/4 − θ0 a.e., we consider φ̃ ∈ H2(R2) ⊂ L∞(R2)

with ∥φ̃∥H2 sufficiently small. The derivative along the second
component then vanishes for any φ̃ ∈ H2(R2) and we obtain the
second equation (4.1) in the dual space H−1(R2) by density and
the existence of the derivative.

To show that (v∗, φ∗) is smooth we write (4.1) as (−∇
2

+

1)v∗
= f1(v∗, φ∗), (−∇

2
+ 1)φ∗

= f2(v∗, φ∗), and check that
(v∗, φ∗) ∈ Sa implies that f1(v∗, φ∗), f2(v∗, φ∗) ∈ L2(R2) using
again Gagliardo–Nirenberg. System (4.1) then implies that v∗,
φ∗

∈ H2(R2) and we can iterate the argument to increase
the regularity: from v∗, φ∗

∈ H2(R2) we check that f1(v∗, φ∗),
f2(v∗, φ∗) ∈ H2(R2), therefore v∗, φ∗

∈ H4(R2) ⊂ C2(R2) using
(4.1) and Sobolev. □

5. Discussion

In this paper we have extended the theory of optical solitons in
liquid crystals to a model that allows large angle deviations of the
liquid crystal orientation. Our results give new information on the
saturation of the nonlinear effects in the system. The saturation
effect we show appears to be optimal and is quite intuitive given
the geometry of the electric field–director angle interaction, but
has received less attention in the literature as most studies have
considered small angle models. Saturation provides an additional
regularizing mechanism, seen in the way the conservation of the
Hamiltonian was used to show long-time existence.

We expect that our results can be extended to cover models
that take into account two more recent experimental methods to
adjust the pre-tilt angle θ0 that do not use an external electric

field E0, either by suitably ‘‘anchoring’’ the angle θ0 at the bound-
ary, see [16], or by using external magnetic fields [17]. Also, while
the condition θ0 > π/4 appears naturally in the derivation of
models considered in this paper and in the literature, see [4], it
does not seem to be necessary in the experimental set-up, and
appears to be a technical condition that facilitates the analysis of
the small scale models on the plane. This point, and the more
general question of justifying the NLS models should motivate
further study of finite domain effects.
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Appendix

We present a heuristic derivation of system (1.1). We start by
describing the physics and geometry of the experiment modeled
by the system.

The experimental setup is a rectangular box containing a ne-
matic liquid crystal. Following the notation in the experimental
literature, the horizontal axes are y and z, while x denotes the
vertical axis. We are interested in the propagation of a laser beam
along the z-axis (the ‘‘optical axis’’) in this box. We assume that
the electric field of the laser beam has only one component, along
the x-axis. The complex scalar u(x, y, z) represents the amplitude
of this electric field. (The laser electric field has the form of a
slowly modulated plane wave, see [4].) Furthermore, there is a
constant electric field of magnitude E0 applied to the sample, also
along the x-axis. (This field can be produced by placing the liquid
crystal sample between two capacitor plates that are parallel to
the y, z plane.)

The nematic liquid crystal we consider can be thought of
as consisting of cylindrically symmetric molecules. We describe
the macroscopic state of the material by a field of unit vectors
(the ‘‘director field’’) that represent the macroscopic molecu-
lar orientation at each point and model the material using the
Oseen–Frank equations for the director field [18,19]. In the exper-
iment considered we assume that this unit vector is everywhere
on the x−z plane and can be thus described by the angle θ (x, y, z)
between the molecular axis unit vector and the z-axis.

The experimental system is described by a coupled Maxwell–
Oseen–Frank system of equations for the external and laser elec-
tric fields and director field respectively, see [4]. The interaction
between electric fields and the director field has a simple ge-
ometrical interpretation, namely electric fields create dipoles in
the nematic liquid crystal molecules and the electric and director
fields tend to align. We can then see that the assumptions that
all electric fields are along the x-axis, and that the molecular
orientation vector is on the z, x−plane are consistent with the
Maxwell–Oseen–Frank description.

If the laser beam is absent, the total electric field is E0x̂, with
E0 a real constant, x̂ the unit vector along the x-axis. The director
field produced by this constant electric field is denoted by θ0. This
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angle field is referred to as ‘‘pretilt angle’’. The Maxwell–Oseen–
Frank equations for the pretilt angle θ0 produced by a constant
electric field are complicated by the boundary conditions for the
director field at the boundaries of the domain occupied by the
liquid crystal. A simplification can be obtained if we ignore lateral
boundaries along the optical axis, i.e. assume that the domain is
only bounded by parallel planes at x = ±d/2, y = ±c/2 for some
d, c > 0. We may also assume that θ0 is independent of z. The
Maxwell–Oseen–Frank equations then reduce to

ν∇2θ0 = −
1
2
E2
0 sin 2θ0, (A.1)

with Dirichlet boundary conditions for θ0 at x = ±d/2, y = ±c/2.
Here ∇

2
= ∂2x + ∂2y the Laplacian in the transverse directions.

The director field in the presence of both the laser electric
field (described by u) and the constant field E0x̂ is
written as θ (x, y, z) = θ0(x, y, z) + ψ(x, y, z), i.e. ψ is the
‘‘additional angle’’ produced by the laser beam. Note that the
time-dependence of the laser field is assumed known and is
averaged, i.e. the Maxwell–Oseen–Frank system is approximated
by a time-independent Helmholtz–Oseen–Frank equation. The
system is further simplified assuming slow variation of u and θ
in along the optical axis, see [4], and we obtain the intermediate
model of [1,3]

∂zu =
1
2
i∇2u + iγ (sin2 θ − sin2 θ0)u, (A.2a)

ν∇2θ = −
1
2
(E2

0 + |u|2) sin 2θ, (A.2b)

with θ = θ0 + ψ . Using the relation (A.1) between E0 and θ0 we
then obtain

∂zu =
1
2
i∇2u + iγ (sin2 θ − sin2 θ0)u, (A.3a)

ν∇2ψ =
1
2
E2
0 sin 2θ0 −

1
2
(E2

0 + |u|2) sin 2(θ0 + ψ). (A.3b)

Note that θ0 in (A.3) is still not determined since we have
not solved (A.1) with its boundary conditions. Instead we use a
function that is a reasonable approximation for θ0 given E0. The
simplest choice is a constant that is close to the experimental
value of θ0 in the region where the laser beam varies rapidly. We
thus obtain (1.1), with θ0 a constant. The constant θ0 approxi-
mation is justified by the observation that the beam has a width
measured in micrometers (10−6 m) while the box has dimensions
of centimeters (10−2 m) and θ0 varies over the longer scale of
the box [3]. Related experiments consider non-constant external
field E0, e.g. the case E0 = E0(y), θ0 = θ0(x, y), both periodic in y,
see [20,21].

The main physical advantage of the new model over system
(1.2) is that we have not made any assumptions on the size of ψ .
We also see that the coupling between the laser field u and θ in
both (A.2) and (A.3) vanishes at θ = π/2, i.e. precisely when the
director angle is aligned with the laser electric field.

Note that the physical assumptions behind (A.2), and (1.1) are
the same. In both cases we may use a reasonable approximation
of θ0 as a parameter of the system. The system we consider here
is closer to the systems (1.2), (1.3). Their derivation from (A.2)
goes through (A.3), and where E0 appears explicitly.

The description of the molecular orientation by the director
field and the geometry of the interaction between electric fields
and the molecular orientation imply certain symmetries that

may be broken by specifying the director field in some parts
of the problem, e.g. the boundaries. Thus we start by assuming
that in the absence of the laser electric field, θ0 takes values
in [−π/2, π/2), and that the experimentally observed θ0 takes
values in [0, π/2). Adding the laser field produces an additional
angle ψ . The range of ψ is deduced from Eqs. (A.3b) in Section 2.

Note that the assumption θ0 > π/4 in (1.1) is a technical
condition that was also used in the studies of (1.2), (1.3). Its role
becomes clear in the proofs of Sections 2–4. Also the existence of
a nontrivial solution θ0 of (A.1) requires E0 > E0 for some E0 > 0
that depends on the boundary conditions, see [4]. Our results on
(1.1) are valid for any E0 > 0, i.e. this threshold does not affect
the analysis of (1.1), it is rather related to choosing E0, θ0 that are
consistent with (A.1) and boundary conditions.
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