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eigenvectors of two types, eigenvectors that vanish exactly 
outside the complete graph and eigenvectors that decrease 
exponentially outside the complete graph. Our results also 
imply gaps between the eigenvalues corresponding to localized 
and extended eigenvectors.
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1. Introduction

The Laplacian matrix in graph theory has many interesting properties and appli-
cations in chemistry and physics, see the beautiful survey by Mohar [1]. This matrix 
plays a role in the linear and nonlinear motions in mass-spring models with connectiv-
ities described by a graph. The spectrum and eigenvectors of the corresponding graph 
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Laplacian describe the respective frequencies and spatial profiles of the linear modes of 
these models. The present study considers graphs obtained by joining complete graphs 
and chains. Such graphs are limiting models of the ones proposed in [2–4] to understand 
how localized oscillations occur in enzymes; see also the mass-spring models studied in 
[5–9]. Localized oscillations are believed to occur in small regions of higher density of 
the enzyme where aminoacids interact with a larger number of neighbors [7,8]. Typi-
cally, for enzymes with about a thousand aminoacids, these small regions connect about 
forty aminoacids with higher connectivity. At this time, however, the biologists do not 
understand the role of these localized oscillations in biochemical reactions.

Complete graphs connected by chains may also be useful simplifications in problems 
where clusters are weakly connected to outside structures. For the electrical grid, this 
can correspond to urban areas of high connectivity coupled weakly together [10]. For 
reaction-diffusion and related processes on graphs, changes in the connectivity affect the 
speed of propagation of fronts. They can also cause the presence of static fronts that may 
act as barriers to prevent further propagation. Examples of bistable reaction diffusion 
models where graph geometry influences the existence and stability of static solutions 
include [11–13]. Another application is population dynamics and epidemiological models, 
where the graph represents the interaction between populations of different sizes and 
types [11,14,15]. The literature on epidemiological models on graphs is large and spans 
different disciplines, a recent review of results is [16].

In the present work, we consider some of the simpler examples of complete graphs 
connected to chains in order to obtain detailed information on the question of localized 
modes and their frequencies. We study first the Laplacian of a complete graph of p ≥ 6
nodes joined to a chain of q ≥ 3 nodes and show the existence of p − 2 eigenvectors with 
support in the complete graph component, these are referred to as “clique eigenvectors”. 
The clique eigenvectors are degenerate and have eigenvalue p, see Proposition 3.3. We 
also show the existence of an eigenvector that decays outside the complete graph nodes 
and corresponds to an eigenvalue in the interval (p, p + 2), see Proposition 3.10. This 
localized eigenvector, referred to as an “edge eigenvector”, has its maximum amplitude 
at the node connecting the complete graph to the chain and decays exponentially (up to 
a small error) in the chain. Our analysis also gives the decay rate of the edge eigenvectors 
and asymptotics for large p. The remaining eigenvalues are in [0, 4]. The corresponding 
eigenvectors, referred to as “chain eigenvectors”, have small amplitude in the nodes of 
the complete graph. Similar statements apply to the case where p ≥ 6, and q = ∞, 
see Propositions 3.4, and 3.6. The results on clique and edge eigenvectors and their 
eigenvalues are similar to the ones obtained for finite chains. The spectrum includes the 
interval [0, 4], corresponding to oscillatory nondecaying generalized eigenvectors.

We also analyze the spectrum of a complete graph of p ≥ 5 nodes joined to two chains 
of q1, q2 ≥ 3 nodes respectively. We show the existence of p − 3 clique eigenvectors and 
two edge eigenvectors, see Propositions 4.2, 4.9. In the case q1 = q2 = q we have one 
symmetric and one antisymmetric edge eigenvector. The remaining eigenvalues are in 
[0, 4] and correspond to chain eigenvectors. For q1 = q2 = ∞ we have similar results for 
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the localized states, see Propositions 4.3, 4.4, with one symmetric and one antisymmetric 
edge eigenvector. The spectrum includes the interval [0, 4].

The constructive proofs of the edge eigenvectors for both finite and infinite chains 
start with an exact computation of the clique eigenvectors. The eigenvectors normal to 
the clique eigenvectors are examined by interpreting the eigenvalue problem at the chain 
sites as a linear dynamical system, with additional conditions at the boundary of the 
chain. This analysis yields an algebraic equation for the edge eigenvalues. We obtain 
bounds for the edge eigenvalues by examining the roots of the algebraic equations. Note 
that the proofs for the one- and two-chain finite and infinite problems follow the same 
pattern. For two chains, the algebraic equations become more involved. The analysis can 
be simplified by symmetry or by using the Courant-Weyl estimates. We note that the 
Courant-Weyl estimates, Lemmas 3.2, 4.1, give a good approximation of the spectrum for 
finite graphs. The dynamical approach is independent and leads to more precise results.

We also present additional numerical and asymptotic results, for instance simplified 
expressions of the decay rate of edge eigenvectors for large p. We also note the possibility 
of embedded eigenvalues for small values of p. The results obtained for one or two chains 
connected to a complete graph suggest conjectures for the spectrum of a graph composed 
of many complete graphs connected by chains.

The article is organized as follows. Definitions and notation are presented in section 2. 
Sections 3 and 4 contain respectively the analysis for a complete graph connected to one 
and two chains. In Section 5 we present conjectures on the spectrum of a graph composed 
of many complete graphs connected by chains.

2. Definitions and notation

A finite undirected graph G = (V, c) is defined by a set of vertices V ∈ Z together 
with a connectivity function c : V × V → {0, −1} satisfying cij = −1 if vertices i, j are 
connected and 0 otherwise. From the connectivity function, one can build the Laplacian 
matrix of G with |V | = n as the n × n matrix L such that Lij = cij = −1 if ij is an 
edge and Lii =

∑n
j=1 Lij . We assume the graph to be connected Lii > 0, ∀i. The degree 

di = Lii is the number of connections of vertex i.
Since L is symmetric and nonnegative, its eigenvalues λk, k = 1, . . . , n are real non 

negative and the eigenvectors vk can be chosen orthonormal. We can order the eigenvalues 
in the following way

λ1 ≥ λ2 ≥ · · · > λn = 0.

Note that only λn is zero because the graph is connected [17].
We also allow the graph to be infinite, so that G = (V, c) is a subset V of Z but 

assume a finite degree for each vertex.
We introduce some additional definitions for infinite graphs. Consider the standard 

Hermitian inner product 〈f, g〉c =
∑

j∈I fjg
∗
j , f , g complex-valued functions on V, and 
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the corresponding space l2c = l2c(V; C) of f satisfying ||f ||2l2 = 〈f, f〉c < ∞. We also 
consider the space l∞c of functions f satisfying supj∈V |fj | < ∞. The real subspaces 
of real valued elements of l2c , l∞c will be denoted by l2, l∞. The restriction of 〈·, ·〉c to 
elements of l2 × l2 defines an inner product in l2, denoted by 〈·, ·〉.

Given a bounded linear operator M in l2c , the residual set ρ(M) of M is the set of 
all λ ∈ C for which M − λI has a bounded inverse in l2c , I the identity. The spectrum 
σ(M) is the complement of ρ(M) in C. The point spectrum σp(M) of M is the set 
of all λ ∈ C satisfying Mv = λv for some v in l2c . Such v ∈ l2c are also denoted as 
eigenvectors of M . We have σp(M) ⊂ σ(M). The Laplacian L of a graph of finite degree 
is a bounded operator in l2c , and is also Hermitian, and nonnegative. We therefore have 
σ(L) ⊂ [0, +∞). By the reality of L, σ(L), we may seek eigenvalues of L in l2.

In the case a finite graph, σ(L) = σp(L), i.e. the set of eigevalues above. In the case 
of infinite graphs, the spectrum of L may be larger than the point spectrum. We use 
the notion of the essential spectrum σe(M) of a bounded operator M in l2c defined as in 
[18], p.29, namely λ ∈ σ(M) belongs to σe(M) if M − λI either fails to be Fredholm, 
or is Fredholm with nonzero index, see e.g. [19], p.243, for a weaker condition, namely 
M − λI not semi-Fredholm.

In the case of the graphs studied below we see examples of u ∈ l∞c , u /∈ l2c , that satisfy 
Lu = λu. Such λ, and u may be referred to as generalized eigenvalues and eigenvectors 
of L respectively. We can show that such λ belong to σe(L), see e.g. [18], ch. 1. Also, we 
see examples of graphs for which σe(L) ∩ σp(L) �= ∅, the corresponding eigenvalues may 
be referred to embedded eigenvalues. We may distinguish cases where we have elements 
in σp(L) is in the interior or the boundary of σe(L).

We recall the standard definitions of a chain and a clique, together with well-known 
properties.

Definition 2.1. A chain or path Pq is a connected graph of q − 1 ≥ 3 vertices whose 
Laplacian L is a tri-diagonal matrix.

The eigenvalues of the Laplacian of Pq are given by

λj = 4 sin2
[
π(q − 1) − j

2(q − 1)

]
, j = 1, . . . , q − 1, (2.1)

see e.g. [20].

Definition 2.2. A clique, Kp is a complete graph with p vertices. Its Laplacian has p on 
the diagonal p and all other entries are equal to −1.

The spectrum of a clique Kp is well-known [17], we have
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Property 2.3. A clique Kp has eigenvalue p with multiplicity p − 1 and eigenvectors 
vk = (1, 0, . . . , 0, −1, 0, . . . , 0, )T , k = 1, . . . , p − 1 and eigenvalue 0 for the constant 
eigenvector vp.

2.1. A chain connected to a clique

We consider graphs formed by the association of clique Kp and a chain Pq denoted 
by G = Kp ⊕ Pq, with p ≥ 3, q ≥ 2 positive integers, defined by the set

V = Vp,− ∪ Vq,+, Vp,− = {−p + 1,−p + 2, . . . , 0}, Vq,+ = {1, 2, . . . , q − 1}, (2.2)

and a connectivity matrix c that satisfies

cij = −1, ∀i, j ∈ Vp,−, (2.3)
c01 = c10 = −1, (2.4)

cij = −1, ∀i, j ∈ Vq,+ with |i− j| = 1, (2.5)

and cij = 0 for all other pairs (i, j) ∈ V × V. Equations (2.3)-(2.5) describe a complete 
graph of p nodes, the set Vp,−, joined to a chain of q nodes, the set Vq,+ with nearest-
neighbor connectivity (2.5). The two sets are joined by (2.4).

Property 2.4. The Laplacian of a graph composed of a complete graph of p nodes joined 
to a chain of q nodes is

L = L′
Kp

+ L′
Pq
,

where L′
Pq

is the (p + q − 1) × (p + q − 1) matrix containing the Laplacian of the chain 

Pq, L′
Pq

=
(

0 0
0 LPq

)
and similarly L′

Kp
=

(
LKp

0
0 0

)
.

We then write the graph as Kp ⊕ Pq.

2.2. A motivational example

We consider the graph K6 ⊕ P4 shown in Fig. 1.
The Laplacian is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −1 −1 −1 −1 −1 . . .
−1 5 −1 −1 −1 −1 . . .
−1 −1 5 −1 −1 −1 . . .
−1 −1 −1 5 −1 −1 . . .
−1 −1 −1 −1 5 −1 . . .
−1 −1 −1 −1 −1 6 −1 . .
. . . . . −1 2 −1 .
. . . . . . −1 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.6)
. . . . . . . −1 1
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Fig. 1. A chain 3 coupled to the clique K6.

Table 1
Numerically computed eigenvectors and eigenvalues for the graph G = P4 ⊕ K6.

node v1 v2 v3 v4 v5 v6 v7 v8 v9

1 0.1524 0 0 0 0 -0.04879 0.098934 -0.23129 0.33333
2 0.1524 -0.707 0 0.707 0 -0.04879 0.098934 -0.23129 0.33333
3 0.1524 0 0.707 -0.707 0 -0.04879 0.098934 -0.23129 0.33333
4 0.1524 0.707 0 0 0.707 -0.04879 0.098934 -0.23129 0.33333
5 0.1524 0 -0.707 0 -0.707 -0.04879 0.098934 -0.23129 0.33333
6 -0.9198 0 0 0 0 0.10652 -0.051079 -0.16999 0.33333
7 0.19043 0 0 0 0 0.54399 -0.72369 0.18156 0.33333
8 -0.039105 0 0 0 0 -0.75017 -0.29898 0.48499 0.33333
9 0.0064791 0 0 0 0 0.34361 0.57908 0.65988 0.33333

λ 7.0355 6 6 6 6 3.1832 1.5163 0.26503 0

where LP4 is the Laplacian of an n = 9 vertex graph such that the last 4 vertices form a 
chain q = 4, LK6 is the Laplacian of an n = 9 vertex graph such that the first 6 vertices 
form a clique p = 6 and where the 0’s are represented by . for clarity.

The eigenvectors and corresponding eigenvalues can be computed numerically. They 
are in Table 1.

We see that p − 1 = 4 of the p = 5 eigenvalues of K6 are preserved. This is easy to see 
by padding with zeros 4 eigenvectors of K6

v2 = (0; 0; 0;−1; 1; 0; 0; 0; 0)T , v3 = (0; 1;−1; 0; 0; 0; 0; 0; 0)T ,

v4 = (0; 0; 1; 0;−1; 0; 0; 0; 0)T , v5 = (0;−1; 0; 1; 0; 0; 0; 0; 0)T

The five other eigenvectors {v1, v6, v7, v8, v9} have the property that

vik = xi, k < 4, (2.7)

because these eigenvectors need to be orthogonal to the eigenvectors of the clique 
{v2, v3, v4, v5}. They are then constant in the clique section of the graph k < 4 except 
at the junction vertex.

For the graph studied above, these eigenvectors are plotted in Fig. 2.
In the article, we prove the results illustrated in this example, specifically
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Fig. 2. Plot of the eigenvectors {v1, v6, v7, v8} obtained numerically corresponding to eigenvalues 
7.03, 3.18, 1.52, 0.26.

• the existence of p − 2 “clique” eigenvalues p for a graph G = Kp ⊕ Pq. The corre-
sponding eigenvectors are non zero in the clique region only.

• the existence of one “edge” eigenvalue, strictly larger than p, constant in the clique 
region and decaying in the chain region.

• the existence of two “edge” eigenvalues, strictly larger than p for a clique Kp con-
nected to two chains Pq1 , Pq2 .

3. A chain connected to a clique

We study the graph Kp⊕Pq. The first step will be to use the Courant-Weyl inequalities 
on the sum of two Hermitian matrices to obtain bounds on the eigenvalues of Kp ⊕ Pq.

3.1. Courant-Weyl inequalities

We have the following Courant-Weyl inequalities, see e.g. [21].

Proposition 3.1. Let A, B symmetric n × n matrices, then the Weyl inequalities are

λk1(A) + λk2(B) ≤ λi(A + B) ≤ λj1(A) + λj2(B), (3.1)

for all i = 1, . . . , n, and all k1, k2, j1, j2 ∈ {1, . . . , n} satisfying k1 + k2 = n + i and 
j1 + j2 = i + 1.

For A, B nonnegative this also implies

λi(A) ≤ λi(A + B) ≤ λj1(A) + λj2(B), (3.2)

for all i = 1, . . . , n, and all j1, j2 ∈ {1, . . . , n} satisfying j1 + j2 = i + 1.

Lemma 3.2. Let L be the graph Laplacian of the graph Kp ⊕ Pq, p ≥ 4, q ≥ 4. 
Then λ1(L) ∈ [p, p + 2], and λj(L) = p, for every j in {2, . . . , p − 1}. Also λp(L) ∈
(0, min{λ1(LPq

) + 2, p}) (⊂ (0, p) if p ≥ 6), and λj(L) ∈ [0, 4), for every j in 
{p + 1, . . . , p + q − 1}.
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Proof. We will apply the Weyl inequalities (3.2) using the decomposition L = A + B, 
where A is the (p + q + 1) × (p + q + 1) block diagonal matrix with blocks LKp

and LPq
. 

The only non-vanishing elements of B are B(p, p) = B(p + 1, p + 1) = 1, B(p + 1, p) =
B(p, p + 1) = −1.

We then have λj(A) = p if j ∈ {1, . . . , p − 1}, and λp−1+k(A) = λk(LPq
) ∈ (0, 4) for 

k ∈ {1, q−2}. Also λp+q−2(A) = λp+q−1(A) = 0. In addition, λ1(B) = 2, and λj(B) = 0, 
∀j ∈ {2, . . . , p + q − 1}.

We use λj(A) ≤ λj(A + B), j = 1, . . . , p + q − 1, see (3.2), as lower bounds.
For the upper bounds we first note that

λ1(A + B) ≤ λ1(A) + λ1(B) = p + 2.

For j ∈ 2, . . . , p− 1 we have

λj(A + B) ≤ min{λj(A) + λ1(B), . . . , λ1(A)} = p,

since λj(B) = 0, ∀j ∈ {2, . . . , p + q − 1}. Similarly

λp(A + B) ≤ min{λp(A) + λ1(B), . . . , λ1(A)} = min{λ1(LPq
) + 2, p}.

In the case p ≥ 6 we also have λ1(LPq
) + 2 < 6 ≤ p, therefore λp(A + B) < p.

For j ∈ {p + 1, . . . , p + q − 1}, i.e. j = p − 1 + k, k ∈ {2, . . . , q − 2}, we have

λp−1+k(A + B) ≤ min{λk(LPq
) + λ1(B), λk−1(LPq

), . . . , λ1(A)}
= min{λk(LPq

) + 2, λk−1(LPq
)} < 4

using λk−1(LPq
) < 4 < p. Also λp+q−2(A +B) ≤ min{2, λq̃−1(LPq

)} < 4, and λp+q−1(A +
B) = 0. The statement follows by combining the above with the lower bounds. �
3.2. Clique eigenvectors

We show the existence of eigenvectors that are strictly zero outside the clique com-
ponent Kp.

Proposition 3.3. Let L be the Laplacian of the graph Kp ⊕ Pq, p ≥ 3, q ≥ 1. Then there 
exists a subspace EK of dimension p −2 such that v ∈ EK satisfies Lv = pv, and vj = 0, 
for all j not in {−p + 1, . . . , −1}.

Proof. Let k ∈ {2, . . . , p − 1} and define the vectors vk ∈ l2 by

vk−1 = 1, vk−k = −1, vkj = 0, ∀j ∈ V \ {−1,−k}. (3.3)

We check that the vk are linearly independent. The statement follows by checking that 
Lvk = pvk, ∀k ∈ {2, . . . , p − 1}. Consider first i ≥ 1. Then
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(Lvk)i =
∑

j∈{−1,−k}
Li,jv

k
j = 0 = pvki (3.4)

since Lij = cij = 0 if i ≥ 1, j ≤ −1 by (2.3)-(2.5). In the case i ∈ {−(p − 1), . . . , 0} \
{−1, −k} we have

(Lvk)i =
∑

j∈{−1,−k}
Lijv

k
j

= Li,−1 − Li,−k = ci,−1 − ci,−k = 0 = pvki , (3.5)

by (3.3), (2.3)-(2.5). Also,

(Lvk)−1 =
∑

j∈{−1,−k}
L−1,jv

k
j

= L−1,−1 − L−1,−k = (p− 1) + 1 = p = pvk−1, (3.6)

and

(Lvk)−k =
∑

j∈{−1,−k}
L−k,jv

k
j

= L−k,−1 − L−k,−k = −1 + (−(p− 1)) = −p = pvk−k. � (3.7)

An alternative proof follows from noticing that the eigenvectors of Kp that vanish 
at the sites connecting Kp to the rest of the graph can be padded with zeros to form 
eigenvectors of Kp ⊕ Pq, see [22] and [23].

The result extends to the case q = ∞:

Proposition 3.4. Let L be the Laplacian of the graph Kp ⊕ P∞, p ≥ 3. Then there exists 
a subspace EK ∈ l2 of dimension p − 2 such that v ∈ EK satisfies Lv = pv, and vj = 0, 
for all j not in {−p + 1, . . . , −1}.

The result follows by noticing that the clique eigenvectors of finite chains Kp⊕Pq can 
be extended to be eigenvectors of Kp ⊕ P∞ by padding the sites beyond q with zeros.

The next result is the existence of an “edge eigenvector”, that is constant on the nodes 
of Kp and decays exponentially in the chain component.

Let E be a real subspace of l2, then E⊥ denotes its orthogonal complement with 
respect to 〈·, ·〉.

3.3. Edge eigenvector for a clique connected to an infinite chain

We first introduce the transfer matrix formalism used to simplify the problem in 
graphs that contain chains.



38 J.-G. Caputo et al. / Linear Algebra and its Applications 605 (2020) 29–62
3.3.1. Transfer matrix for a chain
The equation Lv = λv for the infinite chain V = Z with cij = −1 if |i − j| = 1, cij = 0

otherwise, is

−vj−1 + 2vj − vj+1 = λvj , ∀j ∈ Z. (3.8)

Define Mλ, λ ∈ R, and zj by

Mλ =
[

0 1
−1 −λ + 2

]
, zj =

(
vj

vj+1

)
. (3.9)

Then (3.8) is equivalent to

zj+1 = Mλzj , ∀j ∈ Z. (3.10)

The eigenvalues σ of Mλ satisfy

σ2 − (−λ + 2)σ + 1 = 0,

they are

σ± = 1
2[(−λ + 2) ±

√
(−λ + 2)2 − 4]. (3.11)

The corresponding eigenvectors v± are

v± =
(

1
σ±

)
. (3.12)

We have σ+σ− = 1. The discriminant of the equation in σ is Δ = (2 − λ)2 − 4 and for 
λ ∈ (0, 4) we have Δ > 0 and elliptic dynamics for (3.8).

We will be especially interested in the case λ > 4, where the dynamics is hyperbolic 
and σ+ satisfies the inequality −1 < σ+ < 0.

Remark 3.5. Also, that for λ � 4 we have

σ+ = − 1
λ− 2 + O

(
1

(λ− 2)3

)
, σ− = 2 − λ + O

(
1

(λ− 2)2

)
.

Proposition 3.6. Let L be the Laplacian of the graph Kp ⊕ P∞, p ≥ 5, and let EK be 
as in Proposition 3.4. Then λ > 4 is an eigenvalue of L with corresponding eigenvector 
v ∈ l2 ∩ E⊥

K if and only if F (λ) = 0, where

F (λ) = (−λ + 1)σ+ − (−λ + p)(−λ + 1) + (p− 1), (3.13)
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and σ+ = σ+(λ) is as in (3.11). Furthermore, F (λ) = 0 has exactly one solution in 
(p, p + 2), and no solutions in (4, p] ∪ [p + 2, +∞).

Proof. We construct v ∈ l2 that satisfies Lv = λv, λ > 4. First, let v be orthogonal to 
the span of the p − 2 eigenvectors of Proposition 3.4 (i), then

−v−p+1 + v−1 = 0, . . . ,−v−2 + v−1 = 0,

therefore

v−p+1 = . . . = v−1 = C0 (3.14)

for some real C0. Equation Lv = λv at the nodes k ∈ I = {−p + 1, . . . , −1} is

−
∑

j∈I\{k}
vj + dkvk = λvk,

or

−(p− 2)C0 − v0 + (p− 1)vk = λvk.

Using (3.14) we therefore have

v0 = C1 = (−λ + 1)C0, (3.15)

i.e. the same relation, for all k ∈ {−p + 1, . . . , −1}.
The condition Lv = λv at the node k = 0 is

−
−1∑

j=−p+1
c0,jvj + d0v0 − v1 = λv0,

and reduces to

v1 = (−λ + p)C1 − (p− 1)C0 = [(−λ + p)(−λ + 1) − (p− 1)]C0. (3.16)

Furthermore, Lv = λv at the nodes j ≥ 1 is

−vj−1 + 2vj − vj+1 = λvj , ∀j ≥ 1. (3.17)

We will show that (3.17) implies a second condition on v1, leading to an equation for λ. 
Letting

zj =
(

vj
v

)
, j ≥ 0,
j+1
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(3.17) is equivalent to

zj+1 = Mλzj , ∀j ≥ 0, (3.18)

with Mλ as in (3.9). Therefore z0 = av+ +bv−, a, b real, implies that (3.17) is equivalent 
to

zn = aσn
+v

+ + bσn
−v

−, ∀n ≥ 0, (3.19)

with σ±, v± as in (3.11), (3.12) respectively. The assumption λ > 4 and (3.11) imply 
|σ−| > 1. Therefore v ∈ l2 requires b = 0 in (3.19), in particular we must require

z0 =
(
v0
v1

)
= a

(
1
σ+

)

for some real a, or equivalently

v1 = σ+v0 = σ+C1. (3.20)

By (3.15), we therefore have

v1 = σ+(−λ + 1)C0. (3.21)

We may assume that C0 �= 0, otherwise v vanishes at all nodes. Then, comparing (3.16), 
(3.21) we have

σ+(−λ + 1) = (−λ + p)(−λ + 1) − (p− 1), (3.22)

which by σ+ = σ+(λ) of (3.11) is an equation for λ.
We first check that there is at least one solution λ ∈ (p, p + 2). We let

F (λ) = σ+(−λ + 1) − (−λ + p)(−λ + 1) + (p− 1). (3.23)

F is clearly continuous, moreover

F (p) = (p− 1)(1 − σ+) > 0,

since σ+ ∈ (−1, 0). Also

F (p + 2) = −p(1 + σ+) − (3 + σ+) < 0,

by σ+ ∈ (−1, 0).
To see that there is only one root of F in (p, p + 2) we check that F ′(λ) < 0 for all 

λ ∈ (p, p + 2). Let x = −λ + 2, and examine F̃ (x) = F (λ(x)) for x ∈ (−p, −p + 2). Also 
let σ̃+(x) = σ+(λ(x)). By (3.23)
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F̃ ′(x) = [σ̃(x) − x + 2 − p] + (x− 1)(σ̃′(x) − 1). (3.24)

We claim that σ̃′(x) < −1/2, ∀x ∈ (−p, −p + 2). This follows from

σ̃′(x) = 1
2 + h(x), h(x) = x

(x2 − 4)1/2
,

and h(−p) < 0, h2(−p) > 1, h′(x) = −4(x2 − 4)−3/2 < 0, ∀x ∈ (−p, −p + 2). Then 
h(x) < −1, ∀x ∈ (−p, −p + 2), and the claim follows. Then (3.24), −x + 2 − p > 0, 
x − 1 < −p + 1, and σ̃(x) ∈ (−1, 0) lead to

F̃ ′(x) > −1 + 3
2(p− 1) > 0,

∀x ∈ (−p, −p + 2), by p ≥ 2. It follows that F ′(λ) = −F̃ ′(x) < 0, ∀λ ∈ (p, p + 2).
To check that all solutions of (3.22), λ > 4, are in (p, p +2), consider first λ ≤ p. Then 

−(λ + 1) ≤ p − 1 and by (3.22) we have

σ+ = p− λ + p− 1
λ− 1 ≥ 1,

contradicting σ+ ∈ (−1, 0). Assume now λ ≥ p + 2, then by (3.22) we have

σ+ ≤ −2 − p− 1
λ− 1 ≤ −1,

contradicting σ+ ∈ (−1, 0). �
We have the following theorem for the essential spectrum of the graph Laplacian of 

Kp ⊕ P∞.

Proposition 3.7. Let L be the Laplacian of Kp ⊕ P∞ Then σe(L) = [0, 4].

Proof. Recall that the essential spectrum is invariant under finite rank perturbations, 
see e.g. [19]. The Laplacian of Kp ⊕ P∞, p finite, is a finite rank perturbation of the 
Laplacian of the graph corresponding to Z+ with nearest neighbor connections. The 
essential spectrum of this graph [0, 4]. By the dynamics of the transfer matrix, for λ >
4 we have hyperbolic dynamics, therefore λρ(L). For λ ∈ (0, 4) we have oscillatory 
dynamics, and generalized eigenvalues in v ∈ l∞, v /∈ l2. Thus (0, 4) ∈ σe(L), moreover 
[0, 4] ∈ σe(L) since ρ(L) is open. �

Finally, the whole spectrum of Kp ⊕ P∞ is given by the following theorem.

Proposition 3.8. Let L be the Laplacian of the graph Kp⊕P∞, p ≥ 5. Then the spectrum 
of L is a union of the disjoint sets [0, 4] (the essential spectrum of L), and {λ, p}, with 
λ ∈ (p, p + 2) (the point spectrum of L).
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Remark 3.9. We note that by Proposition 3.4 for p = 3 we have a clique eigenvector 
with eigenvalue λ = 3 ∈ [0, 4], i.e. an embedded eigenvalue. For p = 4 we similarly have 
three clique eigenvectors at the boundary of the essential spectrum. In both cases there 
is numerical evidence for an edge eigenvector outside [0, 4].

3.4. Asymptotic estimates for large p

For large p, it is possible to use F and the relations established above to obtain 
asymptotics for λ, σ+ and C0. From F (λ) = 0, we get

σ+ − (−λ + p) + p− 1
1 − λ

= 0. (3.25)

We can express σ+ as

σ+ = 1
2

[
2 − λ + |2 − λ|

√
1 − 4

(2 − λ)2

]

Let us assume p � 1. Since λ ≥ p, we can expand σ+ in powers of λ and obtain

σ+ = − 1
λ− 2 + O

(
1

(λ− 2)2

)
. (3.26)

Inserting (3.26) into (3.25), we get

λ = p + 1 − p

1 − λ
+ 1

λ− 2

Solving step by step this expression, we obtain the final estimates

λ = p + 1 + O

(
1
p

)
, (3.27)

C0 = 1
1 − λ

≈ −1
p
, (3.28)

σ+ = − 1
λ− 2 ≈ 1

p− 1 . (3.29)

These expressions are reported in Table 2 together with the numerical solution for the 
graph G = P4 ⊕K6. As can be seen the agreement is very good.

3.5. Edge eigenvector for Kp ⊕ Pq

Proposition 3.10. Let L be the Laplacian of the graph Kp⊕Pq, p ≥ 6, q ≥ 3, and let EK

be as in Proposition 3.3. Then λ > 4 is an eigenvalue of L with corresponding eigenvector 
v ∈ E⊥

K if and only if Fq(λ) = 0, where
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Table 2
Edge eigenvector: λ, σ+ and C0 for the theory and the graph G = P4 ⊕ K6.

λ σ+ C0

Numerical solution 7.03 -0.205 -0.166
Theory 7.02 -0.2 -0.167

Fq(λ) = (−λ + 1)σ+
1 + σ2q−3

+

1 + σ2q−1
+

− (−λ + p)(−λ + 1) + (p− 1), (3.30)

and σ+ = σ+(λ) is as in (3.11). Furthermore, Fq(λ) = 0 has exactly one solution in 
(p, p + 2], and no solutions in (4, p] ∪ (p + 2, +∞).

Proof. To construct v that satisfies Lv = λv, λ > 4 and is orthogonal to the span of the 
p − 2 eigenvectors of Proposition 3.3 we argue as in the proof of Proposition 3.6. First, 
we must have

v−p+1 = . . . = v−1 = C0 (3.31)

for some real C0. Arguing as in the proof of Proposition 3.6, Lv = λv at the nodes 
k = −p + 1, . . . , −1, and v0 = C1 leads to the condition

v0 = C1 = (−λ + 1)C0, (3.32)

and Lv = λv at the node k = 0 reduces to

v1 = [(−λ + p)(−λ + 1) − (p− 1)]C0. (3.33)

Furthermore, Lv = λv at the nodes 1 ≤ j ≤ q − 2 is

vj−1 − 2vj + vj+1 = −λvj , ∀j ∈ {1, . . . , q − 2}. (3.34)

Letting

zj =
(

vj
vj+1

)
, 0 ≤ j ≤ q − 2,

(3.34) is equivalent to

zj+1 = Mλzj , ∀j ∈ {1, . . . , q − 2}, (3.35)

with Mλ as in (3.9). Therefore z0 = av+ + bv−, a, b real, implies

zn = aσn
+v

+ + bσn
−v

−, ∀n ∈ {0, . . . , q − 1}. (3.36)

Evaluating at n = q − 2 using (3.12) we have
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[
vq−2
vq−1

]
=

[
aσq−2

+ + bσq−2
−

aσq−1
+ + bσq−1

−

]
. (3.37)

On the other hand, Lv = λv at the node q − 1 is

vq−1 = vq−2

−λ + 1 . (3.38)

Compatibility of (3.37), (3.38) requires

1
−λ + 1[aσq−2

+ + bσq−2
− ] = aσq−1

+ + bσq−1
− . (3.39)

We may assume that one of a, b does not vanish, otherwise by (3.31), (3.32), (3.36) we 
have the trivial vector. Assuming a �= 0, (3.39) is equivalent to

b

a
=

σq−2
+

σq−2
−

(
(−λ + 1)σ+ − 1
1 − (−λ + 1)σ−

)
. (3.40)

σ± are eigenvalues of (3.9) and therefore satisfy σ2 − (−λ + 2)σ + 1 = 0. Using −(−λ +
1)σ± = −σ2

± + σ± − 1 and σ+σ− = 1 we simplify (3.40) to

b

a
=

σq−1
+

σq−1
−

(
σ+ − 1
1 − σ−

)
= σ2q−1

+ . (3.41)

By λ > 4 we have σ+ ∈ (−1, 0), thus b �= 0. Assuming b �= 0 we arrive at a/b = σ2q
− �= 0, 

in a similar way. Thus a, b not both vanishing implies (3.41) and a, b �= 0.
We now compare expressions (3.32), (3.33) for v0, v1, and z0 = av+ + bv−, using also 

for the ratio b/a,

C0

[
−λ + 1

(−λ + p)(−λ + 1) − (p− 1)

]
= a

([
1
σ+

]
+ σ2q−1

+

[
1
σ−

])
. (3.42)

We may choose one of the components of v freely. Choosing C0 = (−λ + 1)−1, the first 
component of (3.42) leads to

a = (1 + σ2q
+ )−1.

Then the second component of (3.42) leads to

(−λ + p) − p− 1
−λ + 1 = σ+

1 + σ2q−3
+

1 + σ2q−1
+

. (3.43)

By (3.11) this is an equation for λ. It is precisely the equation Fq(λ) = 0, with Fq as in 
(3.30).
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Fig. 3. Plot of the function Fq(λ) for 0 ≤ λ ≤ 4 showing the three chain eigenvalues for the graph P4 ⊕K6.

We now examine the roots of Fq(λ), λ > 4. Assume first 4 < λ ≤ p and Fq(λ) = 0. 
Then the left hand side of (3.43) satisfies

−λ + p− p− 1
−λ + 1 >

p− 1
λ− 1 > 1

by the hypothesis λ ≤ p. One the other hand, σ+ ∈ (−1, 0) by λ > 4, therefore

1 + σ2q−3
+

1 + σ2q−1
+

∈ (0, 1).

The right hand side of (3.43) is then in (−1, 0). Thus Fq has no roots in (4, p].
By Proposition 3.2 we have λ1(L) ≤ p + 2, thus all solutions of F (λ) must belong 

to the interval (p, p + 2]. It follows that F (λ) = 0 has exactly one solution in (p, p + 2], 
otherwise we would have λ1(L) < p, contradicting Proposition 3.2. �
3.6. Chain eigenvectors for q finite

In the arguments above, the condition λ > 4 was only used to locate the roots of Fq. 
We can therefore use The function Fq(λ) to study the eigenvalues 0 ≤ λ ≤ 4. In this 
region, the roots σ are imaginary and on the unit circle. It is easier to describe them 
using the phase

φ = atan(
√

4 − (2 − λ)2
2 − λ

). (3.44)

From this expression, we can write Fq as

Fq(λ) = (−λ + 1)cos(φ) + cos(2(q − 1)φ)
1 + cos((2q − 1)φ) − (−λ + p)(−λ + 1) + p− 1. (3.45)

This function of λ is plotted in Fig. 3 for the graph P4 ⊕K6.
The eigenvalues are the zeros of the function Fq(λ) whose graph is presented in Fig. 3. 

Once these zeros are estimated, relation (3.15) allows to compute the ratio of the eigen-
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Table 3
Comparison of the zeros of the function Fq(λ) and the chain eigenvalues λn for the graph P4⊕K6 presented 
in section 2.2. The ratio of the eigenvectors components at the edge and inside the clique are given in the 
last two columns.

n zero of Fq(λ) λn C0 = 1
1−λn

vn
5 /vn

4

8 0.265033 0.26503 1.360 1.361
7 1.51622 1.5163 -1.9365 -1.9368
6 3.1832 3.1832 -0.4580 -0.4580

vector components at the edge and inside the clique. The results are summarized in 
Table 3 for the graph P4 ⊕K6 presented in section 2.2.

As can be seen, the agreement between the eigenvalues and the zeros of Fq(λ) is 
excellent. The ratios of the eigenvectors at the edge and inside the clique also agree well 
with the ones of section 2.2. Without normalization, the eigenvector components vnk in 
the chain section would be

vnk = An cos [λn(k − 5)] + Bn sin [λn(k − 5)] ,

with An, Bn chosen as to satisfy the boundary condition at the end of the chain.

3.7. Spectrum of Kp ⊕ Pq

We have the following theorem summarizing the spectrum of the Laplacian of Kp⊕Pq.

Proposition 3.11. Let L be the Laplacian of the graph Kp⊕Pq, p ≥ 3. Then the spectrum 
of L consists of the eigenvalue p, of multiplicity p − 2, a simple eigenvalue λ ∈ (p, p +2], 
and q eigenvalues in the interval [0, 4] (that include the simple 0 eigenvalue).

4. Two chains connected to a clique

We now consider graphs denoted by G = Pq1 ⊕ Kp ⊕ Pq2 , with p ≥ 3, q1, q2 ≥ 2
positive integers, defined by the vertex set

V = Vq1,− ∪ Vp,− ∪ Vq2,+, Vq1,− = {−q1 − p + 2,−q2 − p + 3, . . . ,−p− 1,−p}, (4.1)

with Vp,−, Vq1,+ as in (2.2), and a connectivity matrix c that satisfies

ci,j = −1, ∀i, j ∈ Vp,−, (4.2)

c−p,−p+1 = c−p+1,−p = c0,1 = c1,0 = −1, (4.3)

ci,j = −1, ∀i, j ∈ Vq1,− ∪ Vq2,+ with |i− j| = 1, (4.4)

and ci,j = 0 for all other pairs (i, j) ∈ V ×V. We now have a complete graph of p nodes, 
the set Vp,−, joined to two chains of q1 − 1, q2 − 1 nodes by (4.3).
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Lemma 4.1. Let L be the graph Laplacian of the graph Pq1 ⊕Kp⊕Pq2 , p ≥ 6, q1, q2 ≥ 4. 
Then λ1(L), λ2(L) ∈ [p, p + 2], and λj(L) = p, for every j in {3, . . . , p − 1}. Also, 
λp(L), λp+1(L) ∈ (0, min{λ1(LPq

) + 2, p}) (⊂ (0, p) if p ≥ 6), q = max{q1, q2}, and 
λj(L) ∈ [0, 4), for every j in {p + 3, . . . , p + q1 + q2 − 2}.

Proof. We will apply the Weyl inequalities (3.2) using the decomposition L = A + B, 
where A is the (p + q1 + q2 − 2) × (p + q1 + q2 − 2) block diagonal matrix with blocks 
LPq1

, LKp
, and LPq2

. Then the only non-vanishing elements of B are B(q1 − 1, q1 − 1) =
B(q1, q1) = B(q1 + p − 1, q1 + p − 1) = B(q1 + p, q1 + p) = 1, and B(q1, q1 − 1) =
B(q1 − 1, q1) = B(q1 + p, q1 + p − 1) = B(q1 + p − 1, q1 + p) = −1.

We then have λj(A) = p if j ∈ {1, . . . , p}, and λp−1+k(A) =∈ (0, 4) for k ∈ {1, q1+q1−
4}. Also λp+q1+q2−4(A) = λp+q1+q2−3(A) = λp+q1+q2−2(A) = 0. Furthermore, λ1(B) =
λ2(B) = 2, and λj(B) = 0, ∀j ∈ {3, . . . , p + q1 + q2 − 2}.

We use λj(A) ≤ λj(A + B), j = 1, . . . , p + q1 + q2 − 2, see (3.2), as lower bounds.
For the upper bounds we first have

λ1(A + B) ≤ λ1(A) + λ1(B) = p + 2,

λ2(A + B) ≤ min{λ2(A) + λ1(B), λ1(A) + λ(B)} = p + 2.

For j ∈ 3, . . . , p− 1 we have

λj(A + B) ≤ min{λj(A) + λ1(B), λj−1(A) + λ2(B), . . . , λ1(A)} = p,

using λj(B) = 0, ∀j ∈ {3, . . . , p + q1 + q2 − 2}. Also,

λp(A + B) ≤ min{λp(A) + λ1(B), λp−1(A) + λ2(B), . . . , λ1(A)}

= min{max{λ1(LPq1
), λ1(LPq2

)} + 2, p},

λp+1(A + B) ≤ min{λp+1(A) + λ1(B), λp(A) + λ2(B), . . . , λ1(A)}

= min{max{λ1(LPq1
), λ1(LPq2

)} + 2, p}.

If p ≥ 6 then λ1(LPq
) + 2 < 6 ≤ p, therefore λp(A + B), λp+1(A + B) < p.

For j ∈ {p + 2, . . . , p + q1 + q2 − 5}, i.e. j = p − 1 + k, k ∈ {3, . . . , p + q1 + q2 − 4}, we 
have

λp−1+k(A + B) ≤ min{max{λ1(LPq1
), λ1(LPq1

)} + 2 . . . , λ1(A)}

= min{max{λ1(LPq1
), λ1(LPq1

)} + 2, p},

Also

λp+q1+q2−4(A + B) ≤ min{2, λqj−2(LPql
) + 2, λql−3(LPql

)},

l=1,2
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therefore λp+q1+q2−4(A + B) < 4 if q1, q2 ≥ 4 using (2.1) for λq−3(LPq
), q ≥ 4, and

λp+q1+q2−3(A + B) ≤ min
l=1,2

{2, λqj−2(LPql
) < 4,

λp+q1+q2−2(A + B) = 0. The statement follows by combining the above with the lower 
bounds. �
4.1. Clique eigenvalues

Proposition 4.2. Let L be the Laplacian of the graph Pq1 ⊕Kp ⊕ Pq2 , p ≥ 4, q1, q2 ≥ 2. 
Then there exists a subspace EK of dimension p − 3 such that v ∈ EK satisfies Lv = pv, 
and vj = 0, for all j not in {−p + 2, . . . , −1}.

Proof. Let k ∈ {2, . . . , p − 2} and define the vectors vk ∈ l2 by

vk−1 = 1, vk−k = −1, vkj = 0, ∀j ∈ V \ {−1,−k}. (4.5)

The vk are linearly independent and the statement will follow by checking that Lvk =
pvk, ∀k ∈ {2, . . . , p − 2}. Let i ≥ 1 or i ≤ −(p − 1) − 1. Then (Lvk)i = pvki , as in (3.4). 
The case i ∈ {−(p − 1), . . . , 0} \ {−1, −k} is as in (3.4). The cases i = −1, −k follow 
from (3.6), (3.7) respectively. �

As for the chain connected to a clique, the result extends to the case of two infinite 
chains q1, q2 = ∞.

Proposition 4.3. Let L be the Laplacian of the graph P∞ ⊕Kp ⊕ P∞, p ≥ 4. Then there 
exists a subspace EK ∈ l2 of dimension p − 3 such that v ∈ EK satisfies Lv = pv, and 
vj = 0, ∀j /∈ {−p + 2, . . . , −1}.

4.2. Edge eigenvalues

Let v ∈ l2 be an eigenvector of L for the graph Pq⊕Kp⊕Pq, q ≥ 2 (including the case 
q = ∞). Then v is symmetric if v−p−1−n = vn, for all integer n ≥ 0, and antisymmetric 
if v−p−1−n = −vn, for all integer n ≥ 0.

Proposition 4.4. Let L be the Laplacian of the graph P∞ ⊕ Kp ⊕ P∞, p ≥ 5, and let 
EK be as in Proposition 4.2. Then all eigenvectors v ∈ l2 ∩ E⊥

K of L corresponding to 
eigenvalues λ > 4 are either symmetric or antisymmetric. λ > 4 is the eigenvalue of a 
symmetric eigenvector vS ∈ l2 ∩ E⊥

K of L if and only if FS(λ) = 0, where

FS(λ) = (−λ + 2)σ+ − (−λ + p− 1)(−λ + 2) + 2(p− 2). (4.6)
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λ > 4 is the eigenvalue of a symmetric eigenvector vA ∈ l2 ∩ E⊥
K of L if and only if 

FA(λ) = 0, with

FA(λ) = σ+ − (−λ + p + 1). (4.7)

σ+ = σ+(λ) in (4.6), (4.7) is as in (3.11), Furthermore, both equations FA = 0, FS = 0
have exactly one solution in (p, p + 2) and no solutions in (4, p] ∪ [p + 2, +∞).

Proof. We construct v ∈ l2 that satisfy Lv = λv, with λ > 4. We first let v be orthogonal 
to the span of the p − 3 eigenvectors of Proposition 3.4, or

−v−p+2 + v−1 = 0, . . .− v−2 + v−1 = 0,

therefore

v−p+2 = . . . = v−1 = C0 (4.8)

for some real C0. We also let

C1 = v0, C−1 = v−p+1. (4.9)

The condition Lv = λv at the nodes k = −p + 2, . . . , −1 leads to

(p− 3)C0 + C1 + C−1 − (p− 1)C0 = −λC0, (4.10)

for all k = −p + 2, . . . , −1, or

C1 + C−1 = (−λ + 2)C0. (4.11)

Let

C2 = v1, c−2 = v−p. (4.12)

Then Lv = λv at k = 0 is

−
−1∑

j=−p+1
c0,jvj + d0v0 − v1 = λv0,

and reduces to

C−1 + (p− 2)C0 + C2 = (−λ + p)C1. (4.13)

Similarly, Lv = λv at k = −p + 1 is
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−
−1∑

j=−p+1
c−p+1,jvj + d−p+1v−p+1 − v−p = λv−p+1,

and reduces to

C1 + (p− 2)C0 + C−2 = (−λ + p)C−1. (4.14)

Considering Lv = λv at the nodes j ≥ 1, we argue as in the proof of Proposition 3.6
to obtain

C2 = σ+C1. (4.15)

On the other hand, Lv = λv at the nodes j ≥ −p is

−vj−1 + 2vj − vj+1 = λvj , ∀j ≤ −p. (4.16)

Letting

zj =
(

vj
vj+1

)
, j ≥ −p,

(4.16) is equivalent to

zj+1 = Mλzj , ∀j ≤ −p− 1, (4.17)

with Mλ as in (3.9), or

z−p−n = (M−1
λ )nzp, ∀n ≥ 0, (4.18)

therefore if z−p = av+ + bv−, a, b real, we have

z−p−n = aσ−n
+ v+ + bσ−n

− v− = aσn
−v

+ + bσn
+v

−, ∀, n ≥ 0 (4.19)

by σ−σ+ = 1. By λ > 4, |σ−| > 1, the condition v ∈ l2 leads to a = 0. We must then 
require

z−p =
(

v−p

v−p+1

)
= b

(
1
σ−

)

for some real b, or equivalently

C−2 = σ+C−1 (4.20)

by (4.9), (4.12).
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The possible eigenvectors v ∈ l2 ∩ EK
⊥ of L are determined by equations (4.11), 

(4.13), (4.14), (4.15), (4.20) for the C−2, . . . , C2. We claim that there are only two non-
trivial solutions, corresponding to C−1 = C1 and C−1 = −C1, leading to symmetric and 
antisymmetric eigenvectors respectively.

To show the claim, we first use (4.15), (4.20) to reduce the system to three equations 
for C−1, C0, C1. We then add and subtract (4.13), (4.14), to obtain

(C−1 + C1)(−λ + p− σ+ − 1) = 2(p− 2)C0, (4.21)

and

(C−1 − C1)(−1 + σ+ + λ− p) = 0. (4.22)

By (4.22) we either have C−1 = C1, the symmetric case, or

σ+ = −λ + p + 1, (4.23)

which by (4.21) implies

−(C−1 + C1) = (p− 2)C0. (4.24)

Suppose that C0 �= 0, then (4.24), (4.11) imply λ = p. Then (4.23) implies σ+ = 1, but 
this contradicts σ+ ∈ (−1, 0), from (3.11) with λ > 4. It follows that C0 = 0. By (4.23)
we then have C−1 = −C1, the antisymmetric case.

To see that the corresponding eigenvalues belong to (p, p + 2) we first consider the 
antisymmetric case C−1 + C1 = 0. The eigenvalue λ then satisfies (4.23), with σ+ as in 
(3.11). Let

FA(λ) = σ+ − (−λ + p + 1). (4.25)

FA is continuous and FA(p) = σ+−1 < 0 by σ+ ∈ (−1, 0). Also, FA(p +2) = σ++1 > 0 by 
σ+ ∈ (−1, 0). Therefore we have at least one antisymmetric eigenvector with eigenvalue 
λ ∈ (p, p + 2).

We check that F ′
A(λ) > 0 for λ ∈ (p, p + 2). Let x = −λ + 2, and examine F̃ (x) =

F (λ(x)) for x ∈ (−p, −p + 2). We have

F̃ ′
A(x) = σ̃′(x) − 1 < 0.

We saw in the proof of Proposition 3.6 that σ̃′(x) < −1/2, for all x ∈ (−p, −p + 2), 
therefore F ′

A(λ) = −F̃ ′
A(x) > 0, for all λ ∈ (p, p + 2).

Also, λ ≤ p would imply σ+ ≥ 1 by (4.23), contradicting σ+ ∈ (−1, 0). Similarly, 
λ ≥ p + 2 and (4.23) would imply σ+ ≤ −1, a contradiction.
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We conclude that equation (4.23) for antisymmetric eigenvectors has exactly one so-
lution in (p, p + 2) and no other solution satisfying λ > 4.

In the symmetric case C−1 = C1, by (4.11) we must also have C0 �= 0, otherwise 
we have a trivial solution. Combining (4.21) and (4.11), the corresponding eigenvalue λ
must then satisfy

(−λ + 2)(−λ + p− σ+ − 1) = 2(p− 2), (4.26)

or equivalently

σ+ = −λ + p− 1 − 2 p− 2
−λ + 2 . (4.27)

Let

FS(λ) = (−λ + 2)σ+ − (−λ + p− 1)(−λ + 2) + 2(p− 2), (4.28)

with σ+ as in (3.11). FS is continuous and we have

FS(p) = (p− 2)(2 − σ+) > 0

by σ+ ∈ (−1, 0). Also,

FS(p + 2) = −p(1 + σ+) − 4 < 0

by σ+ ∈ (−1, 0). There then at least one symmetric eigenvector with eigenvalue λ ∈
(p, p + 2).

We see that F ′
S(λ) < 0 for λ ∈ (p, p +2). Let x = −λ +2, and examine F̃ (x) = F (λ(x))

for x ∈ (−p, −p + 2). We have

F̃ ′
S(x) = σ̃+(x) + xσ̃′

+(x) − 2x− p + 3.

By x < −p + 2 we have −2x > 2p − 4, therefore

F̃ ′
S(x) > xσ̃′

+(x) + p− 1 + σ̃+(x).

We saw in the proof of Proposition 3.6 that σ̃′(x) < −1/2, for all x ∈ (−p, −p + 2), 
therefore xσ̃′

+(x) > 0, ∀x ∈ (−p, −p + 2). Also p − 1 + σ̃+ > p − 2 > 0. Thus F ′
S(λ) =

−F̃ ′
S(x) < 0, for all λ ∈ (p, p + 2).
Also, suppose that λ ≤ p, then −(−λ + 2) ≤ p − 2 and (4.27) would imply

σ+ ≥ −1 + 2 p− 2
λ− 2 ≥ 1,

contradicting σ+ ∈ (−1, 0). Similarly, λ ≥ p + 2 and (4.27) imply
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σ+ ≤ −3 − 2 p− 2
−λ + 2 ≤ −3 + 2p− 2

p
≤ −1,

contradicting σ+ ∈ (−1, 0).
Thus equation (4.26) for symmetric eigenvectors has exactly one solution in (p, p +2)

and no other solution satisfying λ > 4. �
Remark 4.5. The eigenvalue corresponding to the antisymmetric eigenvector is larger 
than the one for the symmetric eigenvector. In section 4.4 we derive the asymptotic 
estimates (4.32), (4.33) of these eigenvalues for large p.

Proposition 4.6. Let L be the Laplacian of P∞ ⊕Kp ⊕ P∞, p ≥ 6. Then σe(L) = [0, 4].

The proof uses the argument of Proposition 3.7.
As for Kp ⊕ P∞, we have the following theorem for the spectrum of P∞ ⊕Kp ⊕ P∞, 

p ≥ 6.

Proposition 4.7. Let L be the Laplacian of the graph P∞ ∪ Kp ∪ P∞, p ≥ 6. Then the 
spectrum of L is a union of the disjoint sets [0, 4] (the essential spectrum of L), and 
{λ1, λ2, p}, with λ1 ≥ λ2 ∈ (p, p + 2) (the point spectrum of L).

Remark 4.8. By Proposition 4.3, for p = 4 we have three clique eigenvalues λ = 4 ∈
σe(L).

4.3. Edge eigenvectors for Pq1 ⊕Kp ⊕ Pq2

We have the following proposition showing the existence of two edge eigenvectors for 
the graph Pq1 ⊕Kp ⊕ Pq2 .

Proposition 4.9. Let L be the Laplacian of the graph Pq1 ⊕Kp ⊕ Pq2 , p ≥ 6, q1, q2 ≥ 3. 
Then λ > 4 is an eigenvalue of L with corresponding eigenvector v ∈ E⊥

K if and only if 
Dq1,p,q2(λ) = 0, where

Dq1,p,q2(λ) = (p− 2)(2 −Qq1 −Qq2) − (−λ + 2)(Qq1Qq2 − 1), (4.29)

where

Qq = σ+
1 + σ2q−3

+

1 + σ2q−1
+

− (−λ + p), (4.30)

and σ+ = σ+(λ) is as in (3.11). Dq1,p,q2(λ) = 0 has exactly two solutions in (p, p +2] and 
no solutions in (4, p] ∪ (p + 2, +∞). In the case q1 = q2 = q, we have the factorization 
Dq1,p,q2(λ) = −FA,q(λ)FS,q(λ) with
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Fig. 4. Plot of the functions FS(λ) and FA(λ) for the graph P∞ ⊕ K6 ⊕ P∞.

FS,q(λ) = (−λ + 2)(Qq + 1) + 2(p− 2), FA,q(λ) = 1 −Qq. (4.31)

Solutions of FS,q(λ) = 0, FA,q(λ) = 0 correspond to symmetric and antisymmetric eigen-
vectors of L respectively. Furthermore, both equations FA,q(λ) = 0, FS,q(λ) = 0, q ≥ 3, 
have exactly one solution in (p, p + 2) and no solutions in (4, p] ∪ [p + 2, +∞).

The proof combines the arguments of Propositions 4.4, 3.10 and is given in the ap-
pendix

We have the following theorem for the whole spectrum of the graph Pq1 ⊕Kp ⊕ Pq2 .

Proposition 4.10. Let L be the Laplacian of the graph Pq1 ⊕Kp ⊕ Pq2 , p ≥ 6, q1, q2 ≥ 2. 
Then the spectrum of L consists of the eigenvalue p, of multiplicity p −3, two eigenvalues 
λ1, λ2 ∈ (p, p + 2]. All other eigenvalues are in the interval [0, 4]

4.4. Numerical calculations and asymptotic estimates for large p

Fig. 4 shows the functions FA(λ) and FS(λ). In the following, we derive asymptotic 
estimates for their zeros λ. For that we will use the asymptotic estimates of σ+ (3.26)

σ+ ≈ 1
2 − λ

First, assume an antisymmetric solution so that C0 = 0 Then,

FA(λ) = σ+ − (−λ + p + 1)a = 0

From this equation, we get

1
2 − λ

= −λ + p + 1

which yields the following second degree equation for λ

λ2 − λ(p + 3) + 2(p + 1) − 1 = 0.
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The interesting solution is

λ = p + 3
2 + 1

2
√

(p + 3)2 − 4(2p + 1)

Expanding the square root, we obtain the final estimate

λ = p + 1 + 1
p
, (4.32)

which yields λ ≈ 7.16 for p = 6 close to the numerical value. The quantity σ+ is

σ+ = p

p(1 − p) − 1 .

For p = 6, we have σ+ ≈ −0.19.
For the symmetric case, we have

FS(λ) = (−λ + 2)σ+ − (−λ + p− 1)(−λ + 2) + 2(p− 2) = 0

Substituting equation (3.26) in FS(λ) = 0 yields the following second degree equation 
for λ

λ2 − λ(p + 1) + 2 = 0.

The interesting root is

λ = p + 1
2 + 1

2
√

(p + 1)2 − 8.

Expanding the square root as above yields the estimate

λ = p + 1 − 2
p + 1 . (4.33)

For p = 6, we obtain λ ≈ 6.71. Fig. 4 shows that the zeros of FA(λ) and FS(λ) correspond 
to the asymptotic estimates given above.

5. Graphs of complete graphs: results and conjectures

To conclude the article we present two conjectures on the spectrum of graphs com-
posed of complete graphs Kp connected by chains.

We introduce a graph of complete graphs with the following.

Definition 5.1. A graph of complete graphs is the set G = {Ṽ , Ẽ} where Ṽ =
{Kp1 , Kp2 , . . . , KpN

} where Kpi
is a pi complete graph. The edges are chains connecting 

the vertices Kpi
.



56 J.-G. Caputo et al. / Linear Algebra and its Applications 605 (2020) 29–62
Fig. 5. A graph of 5 complete graphs connected by chains.

Fig. 6. Plot of the three edge eigenvectors computed numerically for the graph G = K10 ⊕ C1 ⊕ C2 ⊕ C3. 
The clique is K10 = {1, 2, . . . , 10} and the chains are C1 = {20, 21, 22}, C2 = {16, 17, 18, 19} and C3 =
{11, 12, 13, 14, 15} connected at vertices 1, 5 and 10 respectively.

An example of such a graph of complete graphs is shown in Fig. 5.
Assume pi ≥ 5 and the length of the edges (chains) greater than 3 and denotes di the 

degree of Kpi
in G. We have the following result.

Proposition 5.2. For a graph of complete graphs G there are at most pi − di − 2 clique 
eigenvalues pi for i ∈ {1, . . . , N}. There is exactly pi − di − 2 clique eigenvalues if Kpi

is connected to edges at different vertices.

The proof is an immediate generalization of the results on the clique eigenvalues 
obtained in sections 3 and 4.

We also give the following conjecture.

Proposition 5.3. For a graph of complete graphs G there are di, i ∈ {1, . . . , N} edge 
eigenvectors with eigenvalues in (pi, pi + 2).

As a numerical example, we show a graph G composed of K10 and three chains.
There are N edge eigenvectors of eigenvalue λ > p. One of them is symmetric, and 

N − 1 are antisymmetric. For the antisymmetric edge eigenvector, the eigenvalue is 
the one calculated for the graph with a clique and two chains. For example for the G =
K10⊕C1⊕C2⊕C3 we have λ = 11.11 for the antisymmetric eigenvector. Both symmetric 
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and antisymmetric eigenvectors can be labeled using a three component vector with 
±1, each component corresponding to a chain connected to K10. Using this shorthand 
notation, the symmetric and antisymmetric eigenvectors are

s =
(1

1
1

)
, a1 =

( 0
1
−1

)
, a2 =

( 1
0
−1

)
,

where the antisymmetric eigenvectors correspond to the eigenvalue of multiplicity N−1 =
2. These eigenvectors are shown in Fig. 6.
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Appendix A. Proof of existence of edge eigenvector for Pq1
⊕ Kp ⊕ Pq2

Proof. To construct v that satisfies Lv = λv, λ > 4 and is orthogonal to the span of 
the p − 3 eigenvectors of Proposition 4.2 we argue as in the proof of Proposition 4.2. 
Considering Lv = λv at the sites j = −p +1, . . . , 0, and letting C−2 = v−p, C−1 = v−p+1, 
C0 = v−p+2 = . . . = v−1, C1 = v0, and C2 = v1 we obtain the equations

C1 + C−1 = (−λ + 2)C0, (A.1)

C−1 + (p− 2)C0 + C2 = (−λ + p)C1, (A.2)

C1 + (p− 2)C0 + C−2 = (−λ + p)C−1, (A.3)

i.e. as in (4.11), (4.13), (4.14).
We will express C2, C−2 in terms of the C1, C−1 respectively by analyzing the Lv = λv

at the remaining sites.
Consider first Lv = λv at the nodes 1 ≤ j ≤ q2 − 2,

−vj−1 + 2vj − vj+1 = λvj , ∀j ∈ {1, . . . , q2 − 2}. (A.4)

We argue as in the proof of Proposition 3.10. Letting zj = (vj , vj+1)T , 0 ≤ j ≤ q2 − 1, 
(A.4) is equivalent to

zj+1 = Mλzj , ∀j ∈ {1, . . . , q2 − 2}, (A.5)
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with Mλ as in (3.9). Then z0 = a2v
+ + b2v

−, a2, b2 real, implies

zn = a2σ
n
+v

+ + b2σ
n
−v

−, ∀n ∈ {0, . . . , q2 − 2}. (A.6)

Evaluating at n = q2 − 2 and comparing to Lv = λv at the node n = q2 − 1, namely

vq2−1 = vq2−2

−λ + 1 , (A.7)

we arrive at

1
−λ + 1[a2σ

q2−2
+ + b2σ

q2−2
− ] = a2σ

q2−1
+ + b2σ

q2−1
− . (A.8)

Arguing as in the proof of Proposition 3.10 we have

b2
a2

= σ2q2
+ , (A.9)

and a2b2 �= 0. Comparing expressions for v0, v1, and z0 = a2v
+ + b2v

−, using also (A.9)
for the ratio b2/a2, we must require

[
C1
C2

]
= a2

([
1
σ+

]
+ σ2q2−1

+

[
1
σ−

])
. (A.10)

Then

C1 = a2(1 + σ2q2−1
+ ), C2 = a2(σ+ + σ2q2−2

+ ), (A.11)

and therefore

C2 = C1σ+
1 + σ2q2−3

+

1 + σ2q2−1
+

. (A.12)

Consider now Lv = λv at the nodes −p − q1 + 3 ≤ j ≤ −p,

−vj−1 + 2vj − vj+1 = λvj , ∀j ∈ {−p− q1 + 3, . . . ,−p}. (A.13)

Letting zj = [vj , vj+1]T , −p − q1 + 2 ≤ j ≤ −p − 1, (A.13) is equivalent to

zj+1 = Mλzj , ∀j ∈ {−p− q1 + 2, . . . ,−p− 1}. (A.14)

Then z−p−q1+2+n = Mn
λ z−p−q1+2, n ∈ {0, . . . , q̃1 − 2} and for n = q1 − 2 we have

z−p = Mq1−2
λ z−p−q1+2. (A.15)
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Setting z−p = a1v
+ + b1v

−, we then have

z−p−q1+2 = (M−1
λ )q1−2z−p = a1σ

q1−2
− v+ + b1σ

q1−2
+ v−. (A.16)

Therefore [
v−p−q1+2
v−p−q1+3

]
=

[
a1σ

q1−2
− + b1σ

q1−2
+

a1σ
q1−3
− + b1σ

q1−3
−

]
. (A.17)

At the same time, Lv = λv at the node −p − q1 + 2 yields

v−p−q1+2 = v−p−q1+3

−λ + 1 . (A.18)

Comparing (A.17), (A.18) we must have

1
−λ + 1[a1σ

q1−3
+ + b1σ

q1−3
− ] = a1σ

q1−2
+ + b1σ

q1−2
− . (A.19)

Note that this is (3.39) in the proof of Proposition 3.10 with q = q1 − 1, a = a1, b = b1, 
and σ± = σ∓. Arguing similarly we have

a1

b2
= σ2q1−3

+ . (A.20)

Comparing expressions for v−p = C−2, v−p+1 = C−1, and z−p = a1v
+ + b2v

−, using also 
(A.20) for the ratio a1/b2 we must require

[
C−2
C−1

]
= b1

(
σ2q1−3

+

[
1
σ+

]
+

[
1
σ−

])
. (A.21)

Then

C−2 = b1(σ2q1−3
+ + 1), C−1 = b1(σ2q1−2

+ + σ−), (A.22)

and

C−2 = C−1σ+
1 + σ2q1−3

+

1 + σ2q1−1
+

. (A.23)

By (A.12), (A.23), system (A.1), (A.2), (A.3) is reduced to

C1 + C−1 − (−λ + 2)C0 = 0, (A.24)

Qq2C1 + C−1 + (p− 2)C0 = 0, (A.25)

C1 + Qq1C−1 + (p− 2)C0 = 0, (A.26)
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with Qq as in (4.30). This is a homogeneous system of the form Mx = 0, with x =
[C−1, C1, C0], M defined implicitly by (A.24)-(A.26).

We compute that detM = Dq1,p,q2(λ), with Dq1,p,q2(λ) given by (4.29). We then have 
the first statement of the proposition, since the trivial solution of would lead to a trivial 
solution of Lv = λv.

We now examine Dq1,p,q2(λ) = 0 with λ > 4. We first show that there are no solutions 
in (4, p]. By (4.29) Dq1,p,q2(λ) = 0 is equivalent to

(p− 2)(2 −Qq1 −Qq2) = (λ− 2)(1 −Qq1Qq2). (A.27)

By λ > 4, we have σ+ ∈ (−1, 0), and Gq = (1 + σ2q̃−1
+ )(1 + σ2q̃+1

+ )−1 ∈ (0, 1). By 
definition (4.30) we then have Qq ∈ (−1, 0); Assume λ ∈ (4, p], then the right hand side 
of (A.27) satisfies

(p− 2)(2 −Qq1 −Qq2) > 2(p− 2)(p− λ + 1) ≥ 2(p− 2). (A.28)

Considering the left hand side of (A.27), we have

1 −Qq1Qq2 ≤ 1 (A.29)

since

Qq1Qq2 = σ2
+Gq1Gq2 + (p− λ)(−σ+Gq1 − σ+Gq2 + p− λ) > 0.

If 1 −Qq1Qq2 ≤ 0, then the left hand side of (A.27) is nonpositive, and by (A.28), equality 
(A.27) can not be satisfied. If 1 −Qq1Qq2 > 0, then the assumption λ ∈ (4, p], and (A.29)
imply

(λ− 2)(1 −Qq1Qq2) ≤ p− 2.

By p > 2 and (A.28) we see that again (A.27) can not be satisfied.
Combining with assumption p ≥ 6 and Proposition 4.1, all solutions of Dq1,p,q2(λ) = 0

with λ > 4 must belong to the interval (p, p + 2]. moreover Dq1,p,q2(λ) = 0 has exactly 
two solutions in (p, p + 2].

We now consider the case q1 = q2 = q we have the factorization Dq1,p,q2(λ) =
−FA,q(λ)FS,q(λ).

We first check that FS,q(λ) = 0, FA,q(λ) = 0 correspond to symmetric and antisym-
metric modes respectively, we add and subtract (A.25), (A.26) obtaining

(C1 + C−1)[Qq + 1 + 2(p− 2)(−λ + 2)−1] = 0, (A.30)

(C1 − C−1)[Qq − 1] = 0. (A.31)
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Consider the eigenvalue satisfying FA,q(λ) = Qq − 1 = 0. Suppose that C1 +C−1 �= 0. 
Then to satisfy (A.30), we must have Qq + 1 + 2(p − 2)(−λ + 2)−1 = 0, or equivalently 
to λ = p. Then by the definition of Qq in (4.30), Qq − 1 = 0 is

σ+ =
1 + σ2q−1

+

1 + σ2q−3
+

.

By λ > 4 we have σ+ ∈ (−1, 0). On the other hand

1 + σ2q̃+1
+

1 + σ2q̃−1
+

= 1 − |σ+|2q̃+1

1 − |σ+|2q̃−1 > 1,

thus Qq − 1 �= 0. We therefore have C1 + C−1 = 0, and C0 = 0 by (A.24). By (A.11), 
(A.22) we also have C−2 = −C2, and by Lv = λv at sites j ≥ 1, j ≤ −p of the graph 
we obtain v1+n = −v−p−n, ∀n ∈ {1, . . . , q − 2}. Thus the corresponding eigenvector is 
antisymmetric.

Consider the eigenvalue satisfying FA,q(λ) = Qq + 1 + 2(p − 2)(−λ + 2)−1 = 0. By 
the previous this can not hold if Qq − 1 = 0. Thus C1 − C−1 = 0. By (A.11), (A.22)
we also have C−2 = C2, and by Lv = λv at sites j ≥ 1, j ≤ −p of the graph we obtain 
v1+n = v−p−n, ∀n ∈ {1, . . . , q̃ − 1}. Thus the corresponding eigenvector is symmetric.

To see that we have exactly one symmetric and one antisymmetric eigenvector, we 
observe that by (4.31), σ+ ∈ (−1, 0),

FA,q(p) = σ+
1 + σ2q−3

+

1 + σ2q−1
+

− 1 < 0,

and

FA,q(p + 2) = σ+
1 + σ2q−3

+

1 + σ2q−1
+

+ 1 > 0,

assuming q ≥ 2. FA,q(λ) therefore has at least one root in (p, p + 2). Also,

FS,q(p) = (p− 2)
[
σ+

1 − σ2q−3
+

1 + σ2q−1
+

+ 1
]
> 0,

and

Fq,S(p + 2) = −p

[
σ+

1 − σ2q−3
+

1 + σ2q−1
+

+ 1
]
< 0,

assuming q ≥ 2. FS,q(λ) therefore has at least one root in (p, p + 2). By the count of the 
roots of Dq1,p,q2(λ) for λ > 4 above, there exist unique λA, λS ∈ (p, p + 2) satisfying 
FA,q(λA) = 0, FS,q(λS) = 0 respectively, moreover these are the only roots of FA,q(λA), 
FS,q(λS) with λ > 4. �
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