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We study the stability of breather solutions of a dissipative cubic discrete NLS with
localized forcing. The breathers are similar to the ones found for the Hamiltonian limit
of the system. In the case of linearly stable multi-peak breathers the combination of
dissipation and localized forcing also leads to stability, and the apparent damping of
internal modes that make the energy around multi-peak breathers nondefinite. This
stabilizing effect is however accompanied by overdamping for relatively small values of
the dissipation parameter, and the appearance of near-zero stable eigenvalues.
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1. Introduction

We study dissipative stabilization effects on multi-peak breather solutions of a dis-
crete NLS equation with spatially dependent forcing. The starting point is the
cubic discrete NLS on a finite lattice and nearest-neighbor interaction. This is a
Hamiltonian system and has well known periodic solutions of breather-type. In the
limit of small intersite coupling these solutions can be spatially localized at arbi-
trary site configurations.1 The solutions can also satisfy forced and damped NLS
equations provided that the forcing has a spatial dependence that follows the shape
of the breather of the Hamiltonian system. These solutions are discrete analogues
of the Townes soliton of the continuous forced and damped NLS equation. Recent
works on the continuous model use this idea to produce dissipative solitons with
more general shapes.2,3 The discrete analogue was studied in Ref. 4, where we
considered more general solutions.

In this work, the main question is the stability of multi-peak breathers that are
linearly stable solutions of the Hamiltonian system. We examine the case of small
intersite coupling where the stability of the breather can be understood analyt-
ically, following Refs. 5–8. Multi-peak breathers can be linearly stable, but have
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both positive and negative energy modes and are not local extrema of the energy
(at fixed power). We see that the same solutions remain stable in the forced and
damped equation, and it appears that the non-Hamiltonian perturbation suppresses
the positive energy modes, leaving a system with an elliptic part with negative def-
inite energy and a dissipative hyperbolic part (positive and negative energy here is
specific to the sign conventions we use). Thus forcing and dissipation can provide a
mechanism for nonlinear stability, but we also see that some of the internal modes
can be easily overdamped, yielding negative eigenvalues that are very near the ori-
gin. This suggests that this mechanism is not necessarily very effective in stabilizing
breathers with many peaks. Numerical integration with initial conditions near the
breather indicate that the attraction to the breather amplitude is efficient for some
sites but not for all sites.

The theoretical part of the study is based on the analysis of the Hamiltonian
case, and some simple heuristic calculations of the forced and damped problem
that are confirmed numerically. It would be an interesting problem to give a math-
ematical justification of these results. The problem also is an example of a weakly
damped system that would be of interest in the theory of dissipative dynamics.

The paper is organized as follows. In Sec. 2, we introduce the forced and damped
NLS equation and breather equations. In Sec. 3, we outline the arguments leading
to the calculation of the spectra for the forced and damped system. In Sec. 4,
we give numerical spectra, and integrate numerically the system to examine the
effectiveness of the stabilization mechanism.

2. Dissipative Discrete NLS Equation and Breathers

We consider the dissipative cubic discrete NLS equation

u̇n = iδ(∆u)n + (2γi − ε)|un|2un + Vnun, (2.1)

n ∈ {1, . . . , N}, where ∆ is the discrete Laplacian, defined by

(∆u)n = un+1 + un−1 − 2un, n = 2, . . . , N − 1, (2.2)

(∆u)1 = u2 − 2u1, (∆u)N = uN−1 − 2uN . (2.3)

The particular choice of ∆ corresponds to “Dirichlet” boundary conditions
(other choices are also possible), and γ, δ are real constants (δγ > 0 is the “focusing”
case).

The constant ε > 0 describes a nonlinear damping mechanism, while the term
Vnun, with Vn assumed real for all n, represents forcing (Vn > 0), or damping
(Vn < 0) at site n.

The long time behavior of the autonomous dissipative (ε > 0) system (2.1)
is characterized by its attractor, see Ref. 4. The attractors obtained for different
choices of the Vn can be very different and difficult to analyze. In the present work
the idea is to study some solutions that appear in the Hamiltonian system obtained
from (2.1) by setting ε = 0, Vn = 0, for all n, and persist for suitable choices of
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the Vn. The NLS system (2.1) with ε = 0, Vn = 0, for all n, will be referred to as
the Hamiltonian discrete NLS.

In particular, we study solutions of the discrete NLS (2.1) of the breather form
un = e−iωtAn, with ω real, and An complex.

By (2.1), A, ω must satisfy

−ωAn = δ(∆A)n + (2γ − ε)|An|2An + VnAn, n ∈ {1, . . . , N}. (2.4)

In solving this system one must specify the frequency ω, or some other quantity, see
below. Note that if A satisfies (2.4) so does eiθA, for arbitrary real θ (independent
of n). Also a real breather is a breather with An real, for all n (up to a global
phase).

A solution of (2.4) with ε = 0, Vn = 0, for all n, i.e. a breather solution un =
e−iωtAn of the Hamiltonian discrete NLS, also satisfies (2.1) and (2.4) with ε > 0,
provided that

Vn = ε|An|2, n ∈ {1, . . . , N}. (2.5)

The main question is the stability if these common solutions in the dissipative
problem, and the relation of the linear stability analysis of the Hamiltonian and
dissipative versions of (2.1) around their common solution. Note that this automatic
way of constructing a solution of the dissipative problem from a specific trajectory of
the Hamiltonian system by picking a special, generally time-dependent Vn, works for
arbitrary trajectories of the Hamiltonian system, see Ref. 4 for pull-back attractors
of such systems. Such more general solutions are more difficult to construct.

We briefly review some facts from the analysis of breather solutions of the
Hamiltonian problem. Note that (2.1) with ε = 0, Vn = 0, for all n, can be written
in the form of Hamilton’s equations

u̇n = −i
∂H

∂u∗
n

, n ∈ {1, . . . , N}, (2.6)

with Hamiltonian

H = δ

(
N−1∑
n=1

|un+1 − un|2 + |u1|2 + |uN |2
)

+ γ

N∑
n=1

|un|4. (2.7)

The conserved quantities of system (2.6) are H , and the “power”

P =
N∑

n=1

|un|2. (2.8)

The conservation of P comes from the invariance of H under the (global phase
rotation) map un �→ eiθun, n ∈ ιN , with θ arbitrary, independent of n. An analo-
gous equivariance property under global phase rotation is also present in (2.1) for
arbitrary ε, and forcing Vn.

The existence and calculation of solutions to (2.1) with ε = 0, Vn = 0, for all n,
as been examined by many authors. The first existence proof was given in Ref. 1
for real breathers and |δ| sufficiently small, i.e. the weak coupling case. This case
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is the most amenable to analytical treatment, as the solutions can be obtained as
convergent series expansions in the coupling δ. The zeroth-order part is given by
the δ = 0 solutions, which can be classified easily as being of the form

An = ±
√
− ω

2γ
, for n ∈ U±; An = 0, for n ∈ U0, (2.9)

with −ωγ > 0. The sets U+, U−, U0 can be arbitrary, and it is assumed that their
union is the whole lattice {1, . . . , N}. If ω is considered fixed, solutions exist only
for the right sign of γ. Alternatively one can fix the power P . Such solutions may
be termed k-peak breathers, with k the number of sites in the union of U+ and U−,
i.e. the number of “active” sites.

Note that in the case of δ = 0 each oscillator moves independently, and the gen-
eral solution of (2.1) consists of oscillations of each site with amplitude dependent
frequency, i.e. the breather solutions are very special solutions since the definition
forces all nonzero amplitudes to be the same.

As |δ| is increased the shape begins to change and the sites of U0 develop non-
zero amplitudes. For |δ| not too large the k-peak description remains accurate, and
is mathematically precise as each small |δ| solution belongs to a solution branch
that can be connected (by continuation in δ) to a unique k-peak solution of the
δ = 0 problem, see Ref. 7. Generally δ �= 0 solutions are computed numerically, and
there are several theoretical results for higher coupling, generalizations to other
types of boundary conditions and lattices, infinite lattices, etc. For instance, all
solutions of (2.1) with the particular choice of ∆ in (2.2), (2.3) are real,9 the same
is also the case for decaying breathers in the one-dimensional infinite lattice.10

The study of the evolution around the breather is simplified by using “moving
frame” variables v, defined by un(t) = e−iωtvn(t), so that (2.6) is equivalent to

v̇n = −i
∂Hω

∂v∗n
, n ∈ {1, . . . , N}, with Hω = H − ωP, (2.10)

and H as in (2.6). A solution An, n ∈ {1, . . . , N}, of (2.4) is then a fixed point
of (2.10) and belongs to the circle eiθAn, θ ∈ R, of fixed points of (2.10).

An alternative real notation for (2.10) uses z = [q, p]T , with zn = [qn, pn]T ,
qn = Re vn, pn = Im vn, n ∈ {1, . . . , N}, i.e. q, p are real vectors. Then (2.10) can
be written as

ż = J∇hω, with hω =
1
2
Hω, (2.11)

and (Jz)n = −[pn, qn]T , with J the standard symplectic matrix in R2N .
Using the real notation, the linearization around the breather is

ż = JHz, with H = ∇2hω(A). (2.12)

H is the Hessian of hω at A (the dependence of H on ω is suppressed from the
notation). Then (2.12) is equivalent to the Hamiltonian system

ż = J∇h, with h =
1
2
〈p, L+p〉 +

1
2
〈q, L−q〉 + 〈q, L̃p〉, (2.13)
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where L+, L−, L̃ are (real) symmetric N×N matrices given below. We will consider
the simpler case of real breathers, where we see that L̃ vanishes. (This is not a
restrictive assumption for the finite problem with the Dirichlet ∆ (see Ref. 9)). we
study the spectrum of JH, where

J =

[
0 I

−I 0

]
, H =

[
L+ 0

0 L−

]
, (2.14)

L+ = −ωI − 6γA2 − 2δ∆, (2.15)

L− = −ωI − 2γA2 − 2δ∆, (2.16)

A2 is a diagonal matrix with (A2)n,n = A2
n, n = 1, . . . , N , and I the N×N identity.

The N ×N blocks correspond to the vectors of the real and imaginary components
of z, q and p, respectively.

The stability around the breather solution of (2.1) obtained by a breather of
the Hamiltonian problem, and the choice of Vn given by (2.5) is studied in the
same way, using the moving frame coordinates. The breather is now a fixed point
belonging to a circle of fixed points as in the Hamiltonian case, and the linearization
around it has the form

ż = (JH + εD)z. (2.17)

The notation is as in (2.12), and

JH + εD =

[
−2εA2 L−
−L+ 0

]
, (2.18)

with L±, A2 as in the Hamiltonian case.
The above formulation for the linear stability of breathers is valid for arbitrary

real breathers. We shall study primarily the case where |δ| is small. Then there is
a rather detailed analysis of the Hamiltonian case, i.e. the matrix JH, and explicit
stability criteria that we outline in the next section. These lead to a heuristic study
of the dissipative perturbation of JH.

3. Linear Stability of Dissipative Breathers

To study the stability matrix JH+εD we consider the small |δ| regime. We first set
ε = 0 and summarize some results on the spectrum of JH, following Ref. 7 and ideas
from Ref. 5 (see also Ref. 8). We use these results for a simple heuristic analysis of
the small ε case, assuming a priori that ε � |δ|. These results are then seen to give
a good qualitative prediction of the behavior of the numerically computed spectra
of JH + εD in the next section.

Note that (2.13) with L̃ = 0 describes a linear Hamiltonian system has the
mechanical interpretation of a system with “inverse mass matrix” L+, and “spring
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matrix” L−, i.e. interpreting q, p as position and momentum coordinates respec-
tively. The matrices L± are symmetric but not positive definite, so that the mechan-
ical analogy is not physical. It is instructive however that in the case where L± are
both diagonal we can read the stability of the system by examining the signs of the
eigenvalues. For instance, if entries (L+)n,n, (L−)n,n are nonvanishing and have the
same sign then h contains the harmonic oscillator part (1/2)[(L+)n,np2+(L−)n,nq2].
The oscillator parts lead to pairs of conjugate imaginary eigenvalues for JH. The
harmonic oscillator has positive or negative energy, depending on the sign of the
(L±)n,n. In the case where (L+)n,n, (L−)n,n are nonvanishing and have opposite
signs h contains the saddle-node part ±(1/2)[|(L+)n,n|p2 − |(L−)n,n|q2], yield-
ing a pair of real eigenvalues of opposite signs for JH, and therefore instability.
The case where one of the (L±)n,n vanishes corresponds to a “free-particle” term
±(1/2)[(L+)n,np2, or ±(1/2)[(L−)n,nq2 in h, and leads to a pair of zero eigenvalues
for JH.

The above considerations are directly applicable to the study of JH for the
δ = 0 breathers in (2.9). Given a k-peak breather solution we see from (2.15),
(2.16) that the L± are diagonal. For n ∈ U0 we have (L±)n,n = −ω, so that h

has N − k negative or positive energy harmonic oscillator terms, depending on
the sign of ω. (In the next section γ = −1, so that ω > 0 by (2.9)). These yield
N − k pairs of eigenvalues ±iω of JH. For n ∈ U± we have (L−)n,n = 0, and
(L+)n,n = −4γA2, these correspond to free-particle parts in h, and JH has a zero
eigenvalue of multiplicity 2k. The results are independent of the sets U±, U0.

For |δ| �= 0, H is no longer diagonal, and the eigenvalues move from their δ = 0
positions. The matrices L± can not be diagonalized simultaneously and we can
not bring the problem to the scenario above. Nevertheless the above considerations
are still useful. The spectrum has two main features. First, the eigenvalues ±iω

of the δ = 0 matrix spread along the imaginary axis, roughly within the intervals
±i[ω, ω + 4δ]. This fact that can be shown by Krein signature arguments, see also
Ref. 7 for the infinite lattice.

The question of stability then rests on the behavior of the zero eigenvalues of the
δ = 0 problem, and how they are perturbed for δ �= 0. It can be shown that there is
always a double eigenvalue at the origin, and that the remaining 2k− 2 eigenvalues
are either on the imaginary or the real axis at a distance O(

√|δ|) from the origin
(for |δ| small).7 The number of real or imaginary eigenvalues of JH depends on
the signs of the perturbed zero eigenvalues of L−. A simple criterion for γ, δ > 0
is in Ref. 5. Since L− is a symmetric matrix these near-zero eigenvalues can be
expressed in powers of δ, and another question is the determination of their leading
order term.

We outline one way to calculate the O(
√|δ|) eigenvalues of JH. We write the

L± in block diagonal form

L+ =

[
A+ B+

C+ D+

]
, L− =

[
A− B−
C− D−

]
, (3.1)
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where the (1, 1) (upper left) block is k × k and corresponds to the sites in U , the
union of U+ and U−, i.e. the “active sites” of the δ = 0 problem. The submatrices
A±, . . . , D± are defined by (2.15), (2.16).

Note that the zero eigenvalues of L− in the case δ = 0 are in A−. We can
diagonalize (approximately) the upper left block of the matrices L± by a sequence
of (common) similarity transformations by matrices I + O(δs), with increasing s =
1, . . . , r. These similarity transformations correspond to linear sysmplectic changes
of coordinates for the variables q, p.

Following this strategy, the L± can be transformed after r steps to matrices L̃r
±

with blocks

Ar
+ = Λ1 + O(δ), Br

+ = O(δ), Cr
+ = O(δ), Dr

+ = Λ2 + O(δ), (3.2)

Ar
− = Λr

− + O(δr+1), Br
− = O(δr+1), Cr

− = O(δr+1), Dr
+ = Λ3 + O(δ),

(3.3)

where Ar± is k × k, and Λ1, Λ2, Λ3, Λr− are diagonal.? The letter-to-block corre-
spondence is as in (3.1).

In Ref. 7 we show that the near-zero eigenvalues of JH are, to leading order in
powers of

√
δ, eigenvalues of the 2k × 2k matrix JkHU defined by

Jk =

[
0 Ik

−Ik 0

]
, HU =

[
Λ1 0

0 Λr
−

]
, (3.4)

where Ik is the k × k identity, (Λ1)n,n = −4γA2 for all n, and (Λr
−) has diagonal

entries

ρ1 = 0, ρ2 = c2δ
r2 + O(δr2+1), . . . , ρk = ckδrk + O(δrk+1), (3.5)

with cj �= 0, and rj ≤ r, for all j = 2, . . . , k (i.e. multiple eigenvalues, if any, are
repeated). The above statement follows under the assumption that r is sufficiently
large and that L− has only one zero eigenvalue,? other cases are treated similarly.
Note that L− always has a zero eigenvalue, since (2.4), (2.16) imply L−A = 0.

Clearly, (3.4) implies that JkHU has a double zero eigenvalue, and k − 1 pairs
of eigenvalues

λk,± = ±
√

4γA2ρk, (3.6)

i.e. these are real or imaginary depending on the signs of γ, and the ρk.
In the case of linear stability of a k-peak breather with k > 1, H can not be

definite on the level hypersurfaces of P , and the breather can not be at an extremum
of the energy at fixed power. This can be also interpreted in terms if positive and
negative energy modes. In the case γ < 0 (and ω > 0), the 2(N − k) negative
eigenvalues of H of the δ = 0 breather, interpreted as N −k negative energy modes
of h, remain negative for the small |δ| breather. On the other hand, the case of
linear stability corresponds to the case where H has 2k positive eigenvalues, with
k of them of O(δ), coming from L−. These positive eigenvalues can be interpreted
as positive energy modes.
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The theoretical prediction of the eigenvalues of JH+ εD comes from two
assumptions that can not be justified rigorously at present. First we will assume
that the imaginary eigenvalues at approximately ±i[ω, ω +4δ] remain on the imag-
inary axis. This can be possibly proved for the infinite lattice problem using the
argument of Ref. 7 for JH, but is not clear for the finite lattice case.

The second assumption is that the perturbation of the O(
√|δ|) eigenvalues for

small ε > 0 can be calculated by considering the 2k×2k matrix JkHU +εDk, where
is a Dk is the restriction of D to subspaces of the active sites, i.e.

JkHU + εDk =

[
−2εA2

k Λr
−

−Λ1 0

]
, (3.7)

i.e. A2
k is a k × k diagonal matrix with entries (A2

k)n,n = A2 for all n ∈ U+ ∪ U−.
The idea is that An is only appreciable for n ∈ U±. It can be seen that the steps
leading to L̃r

± add terms of O(εδ), it is then assumed that these are higher order
correction to the eigenvalues computed using (3.7).

The eigenvalues of (3.7) are computed readily for each n ∈ U±. We have 2 × 2
blocks [

−2εA2 ρn

4γA2 0

]
. (3.8)

In the case of a stable block, i.e. γρk < 0, we have the pair of eigenvalues

λk,± = −εA2 ± εA2

√
1 − 4|γρk|

ε2A2
. (3.9)

For ε > 0 and sufficiently small the λk,± are both complex and have negative real
part −ε2A2. For

ε2 ≥ 4|γρk|
A2

, (3.10)

both eigenvalues are real, and negative, we thus have overdamping. As ε → ∞ we
have λk,− → −∞, λk,+ → 0. For large ε we therefore have a negative eigenvalue
that is close to the origin. In fact, for A, γ ∼ 1 the overdamping condition is
already satisfied for very small ε ∼ 2

√
ρk, i.e. comparable to the modulus of the

corresponding eigenvalue of JH.
In the case of an unstable block, i.e. γρk > 0, we have the pair of eigenvalues

λk,± = −εA2 ± εA2

√
1 +

4|γρk|
ε2A2

. (3.11)

Both eigenvalues are real, with λk,− negative, and λk,+ positive, for all ε > 0. We
thus always have instability. As ε → ∞ we have λk,− → −∞, and λk,+ → 0, i.e.
the instability becomes weaker.
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4. Numerical Results for Stable Breathers of the Dissipative NLS

In this section, we give some numerical results on the stability of different breathers,
focusing on breathers that are linearly stable in the Hamiltonian case. We verify
numerically the qualitative picture of the previous section for the stability of forced
and damped breather solutions. We also integrate numerically the equations of
motion. We see that the stabilizing effect of the forcing and dissipative terms drives
the amplitude of many, but not all, sites closer to the breather amplitude.

In what follows we consider (2.1) with γ = −1, and the corresponding breather
solutions.

We first consider the spectrum around breathers that are linearly stable in the
Hamiltonian system. Figures 1(a) and 1(b) show examples with 3-, and 31-peak

0 10 20 30 40 50 60

−1.5

−1

−0.5

0

0.5

1

1.5

n

A
n

(a)

0 10 20 30 40 50 60

−1.5

−1

−0.5

0

0.5

1

1.5

n

A
n

(b)

Fig. 1. (a) Amplitudes An of 3-peak real breather. (b) Amplitudes An of 31-peak real breather.
In both cases the sign of An at the peak sites alternates. N = 65, δ = −0.01, γ = −1.0.
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profiles, respectively. We use N = 65 sites, and δ = −0.01 (focusing case). The
power is chosen proportional to the number of peaks so that the amplitude is near
unity at the active sites, while ω ∼ 2. In both cases the breather amplitudes have
alternating signs at the active sites, and this leads to linear stability under the
Hamiltonian evolution.5

The number of O(δ) eigenvalues in L− is k−1 for the k-peak soliton as expected,
and this leads to the k−1 pairs of conjugate imaginary eigenvalues. These are easily
distinguished from the eigenvalues near ±iω ∼ ±2i in these examples.

In Fig. 2, we examine the linear stability of the 3-peak example of Fig. 1(a),
plotting the spectra, as we vary ε from 0 to 0.2. The near-zero eigenvalues of the
ε = 0 case are ±i0.0173313673, ±i0.283961297, and Fig. 2 indicates that one of
the pairs, the one starting nearest to zero is already overdamped at ε = 0.2. The
other pair still has nonvanishinng imaginary part at ε = 0.2. The dependence of the
eigenvalues on ε before overdamping has the parabolic shape suggested by (3.11).
We verify that overdamping of the eigenvalue starting from ±iρk starts at about
ε = ρk, as in (3.10) with |A| ∼ |γ| = 1.

The window used in Fig. 1(a) does not include the eigenvalues that start near
±iω at ε = 0, these have positive and negative real parts that are at most 10−7 for
all ε ∈ [0, 0.2]. These real parts are near the numerical accuracy of the eigenvalue
calculations here, and we can not determine whether the eigenvalues leave the
imaginary axis.

In the 31-peak example of Fig. 1(b) we have many more eigenvalues that are
smaller that O(

√
δ) in the Hamiltonian problem, e.g. eigenvalues ±i2.5 × 10−5,

±i3.5 × 10−4, ±i3.6 × 10−4,± i7.5 × 10−4, etc. In Fig. 3(a) we show the spectra
varying ε from 0 to 0.15. We see that all but a few eigenvalues are overdamped.
The eigenvalues that are not overdamped shown in the figure start at approximately

−0.5 −0.4 −0.3 −0.2 −0.1 0

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Fig. 2. Eigenvalues of JH+ εD for 3-peak breather of Fig. 1(a) as we vary ε from 0 to 0.2 (step
0.001).
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(a)

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(b)

Fig. 3. (a) Eigenvalues of JH + εD for 31-peak breather of Fig. 1(b), ε is varied from 0 to 0.15
(step 0.001). (b) Zoom of (a) near the origin, ε varies from 0 to 0.05.

±i0.28, ±i0.2 at ε = 0. There are more than the two pairs suggested by the two
branches shown, but are too close to be distinguished in the picture. In Fig. 3(b)
we vary ε from 0 to 0.05 and zoom at the eigenvalues that are near the origin.
These are all overdamped at ε = 0.05. Figures 3(a) and 3(b) do not include the
eigenvalues that start near ±iω at ε = 0, the remarks for the 3-peak example apply
here as well.

The above confirm the picture suggested by the heuristic analysis of the previous
chapter. The O(

√
δ) eigenvalues of JH become stable, while the other eigenvalues

remain on, or in the vicinity of the imaginary axis. Similar results were seen in more
examples.
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Numerical integration of initial conditions near the stable breathers above and
some other examples shows that the amplitude profiles change little for both the
Hamiltonian and forced and damped cases. We integrate up to t = 400, with ε = 0,
0.001, and 0.10. The perturbation is of the order of 10−2. In the Hamiltonian
case ε = 0 we see the amplitude profile stays close to the initial one, with possi-
ble slow oscillatory growth at some inactive sites. Nevertheless the amplitude of
all sites remains to O(10−2) of the initial amplitude, and this is also seen for up
to t = 800. We do not see therefore at this time scale any significant departure
from the predictions of the linearization. In the cases of positive ε we see that the
amplitude of some nodes approaches their value for the breather solutions. This is
not however true for all sites, where we see that the difference from the breather
amplitude remains close to the initial one. This may be related to the presence of
overdamping and the resulting stable eigenvalues that are too near the origin in both
examples.

5. Discussion

We have studied breathers of a dissipative discrete NLS equation with localized
forcing. The combination of dissipation and localized forcing that matches the pat-
tern of breather solutions of the Hamiltonian discrete NLS seems sufficient to damp
the positive energy internal modes present in multi-peak breathers of the Hamilto-
nian system. This leads to the possibility that linearly stable multi-peak solutions
of the Hamiltonian limit become asymptotically stable in the infinite lattice.

At the same time we see that the internal modes can be overdamped even for
small values of the dissipation parameter. Overdamping leads to stable eigenvalues
that are very near the origin, and this limits the strength of this stabilization
mechanism. For the relatively small perturbations of the breather and timescales
studied numearically here, the Hamiltonian and dissipative problems look quite
similar. Trajectories do not leave the vicinity of the breather, and the addition of
dissipation leads to some damping of the perturbation, at some but not all the sites.
Further studies will be needed to examine larger perturbations from the breather
in the Hamiltonian and dissipative cases.

The heuristic study of the stability of the dissipative breathers also includes the
case of linearly unstable breathers of the Hamiltonian problem. These are expected
to remain linearly unstable in the dissipative case, but with vanishing positive
eigenvalues in the strongly damped case. The dynamics of these cases may be more
interesting and could be investigeted in further work.
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