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Abstract

We consider real breather solutions of the discrete cubic nonlinear Schrödinger equation near
the limit of vanishing coupling between the lattice sites and present leading order asymptotics
for the eigenvalues of the linearization around the breathers. The expansion is given in fractional
powers of the intersite coupling parameter and determines the linear stability of the breathers.
The method we use relies on normal form ideas and applies to one and higher dimensional
lattices. We also present some examples.

1 Introduction

The discrete cubic nonlinear Schrödinger equation (DNLS) is a nonlinear lattice system that ap-
pears in many areas of physics, e.g. nonlinear optics [CLS], Bose-Einstein condensates [LFO],
biomolecular chains [KAT]. One of the main problems in nonlinear lattices is to understand spa-
tially localized structures and their role in the dynamics of the system. In this work we study the
linear stability of real breather solutions of the DNLS in the regime where the coupling between
the sites is weak. This is the first step in a systematic study of the stability of breathers.

Breathers are spatially localized time-periodic solutions of the DNLS of the general form e−iωtA,
where ω ∈ R is the temporal frequency, and A : Zd → C is independent of time and decays to
zero at infinity. The existence of breathers has been shown by different methods in one and higher
dimensional lattices. In the case of the weak intersite coupling the basic existence results are in
[MA94], [PKF05a], [PKF05b], [PP08]. In the limit of vanishing intersite coupling, breathers are
localized in a finite set of “active” sites where the modulus of A is of O(1); outside this set |A|
is bounded by a quantity that is proportional to the intersite coupling parameter δ. In this work
we consider breather solutions with A real valued, up to a global phase. Such breathers will be
referred to as real breathers. They exist in any dimension, although for d ≥ 2 not all breathers are
real.

An important property of breathers is that they are relative equilibria, i.e. equilibria in a suitable
“moving frame”. Using the Hamiltonian structure of the DNLS, the corresponding linearization
around these equilibria has the Hamiltonian form JH, with J the symplectic operator, and H a
symmetric operator. To understand the spectrum of JH we use the fact that, for |δ| sufficiently
small, the breather amplitude A can be written explicitly as a convergent power series in δ, so that
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JH is similarly expanded in powers of δ. Observing that the spectrum of JH for δ = 0 is known,
the idea is to develop a perturbation theory for small |δ| spectrum.

The paper describes and justifies an algorithmic procedure for obtaining expansions for the
eigenvalues of JH in fractional powers of δ. More precisely, noting that the eigenvalues of JH
vanish as δ → 0, we describe how to obtain the lowest order nontrivial term in an expansion
in powers of

√

|δ| for each eigenvalue. Under certain nondegeneracy conditions this asymptotic
determines the number of unstable directions in the linearized problem. The main result is stated
in Theorem 3.3. In a preliminary step (Propositions 3.1, 3.2) we see that the number of eigenvalues
of JH is finite (it is twice the number of “active sites” of the breather), and that JH also has
continuous spectrum that lies on the imaginary axis.

In the case of real breathers the operator H has a block diagonal structure, with symmetric
blocks L−, L+. The expansion of the eigenvalues in

√

|δ| follows from a perturbative analysis of
the O(δ)-size eigenvalues of L−, in particular we use normal form ideas, see e.g. [M02], to decouple
the point spectrum from the continuous spectrum and to diagonalize the finite dimensional point
spectrum block. The remaining part of the argument connects the spectral analysis of L− to that
of JH, showing how the sign of the eigenvalues of L− determines linear stability.

The block diagonal structure of H is well known in the literature on nonlinear Schrödinger
equations. The method here relies crucially on the discreteness of the problem, especially the
presence of the “anti-continuous limit” where the sites are uncoupled, and the fact that the operator
JH is bounded so that we can decouple the discrete spectrum from the continuous spectrum.
Also, the present work is partially motivated by [PKF05a], where the sign of eigenvalues of L− is
determined by an argument that appears applicable only to one dimension. In contrast, we can
here in principle calculate the leading order nonzero part of eigenvalues of L− pertubatively in one
or several dimensions, but do not have an a-priori criterion for their sign.

The paper is organized as follows. Section 2 contains definitions and the main result on the
existence of real breathers that we use. Section 3 states and proves the main results on the spectrum
of JH. In Section 4 we present some examples.

2 Breather solutions of the discrete NLS

The cubic discrete NLS equation in the d−dimensional integer lattice Zd is

u̇n = iδ(∆u)n − 2i|un|2un, (2.1)

where fn is the value of the complex function f at the site n ∈ Zd, and ∆ is the discrete Laplacian,
defined by

(∆u)n =

d
∑

j=1

(un+êj
+ un−êj

) − 2dun, (2.2)
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with êj the unit vector in the j−th direction. The discrete NLS (2.1) can be also written as the
Hamiltonian system

u̇n = −i ∂H
∂u∗n

, n ∈ Zd, with H = δ
∑

n∈Zd





d
∑

j=1

|un+êj
− un|2



 +
∑

n∈Zd

|un|4. (2.3)

System (2.1) conserves the Hamiltonian H, and the quantity P =
∑

n∈Zd |un|2 (the “power”).

A breather is a solution of the discrete NLS (2.1) that has the form u = e−iωtA, with ω real, and
A : Zd → C decaying to zero at infinity. By (2.1), A, ω must satisfy

−ωAn = δ(∆A)n − 2|An|2An, n ∈ Zd. (2.4)

Observe that if A satisfies (2.4) so does eiθA, for arbitrary real θ (independent of n). A real breather
is a breather with A = eiφÃ, where Ã is real-valued, and φ an arbitrary real (independent of n).

Breathers are also trajectories of the Hamiltonian vector field of the power P . They are thus
group orbits (or relative equilibria), analogous for instance to circular orbits of the central force
problem, or traveling waves in translation invariant nonlinear wave equations. Given a solution of
(2.4) we define the “moving frame” coordinates v(t) by u(t) = e−iωtv(t), so that (2.1) is equivalent
to

v̇n = −i∂Hω

∂v∗n
, n ∈ Zd, with Hω = H − ωP, (2.5)

and H as in (2.3). A solution A of (2.4) is a fixed point of (2.5) and belongs to the circle eiθA,
θ ∈ R, of fixed points of (2.5).

An alternative real notation for (2.5) is obtained by identifying complex functions with R2-valued
functions. Let z = [q, p]T , with zn = [qn, pn]

t, qn = Revn, pn = Imvn, n ∈ Zd, i.e. q, p are real
functions on Zd. Then (2.5) can be written as

ż = J∇hω, with hω =
1

2
Hω, (2.6)

and (Jz)n = −[pn, qn]
T , i.e. J is the standard symplectic operator.

To study the linear (relative) stability for breather solutions we linearize (2.6) around a solution
A of (2.4). Using the real notation, the linearization around the breather is

ż = JHz, with H = ∇2hω(A), (2.7)

i.e. H is the Hessian of hω at A (the dependence of H on ω is suppressed from the notation). Let
an = ReAn, bn = ImAn, and 〈f, g〉 =

∑

n∈Zd fngn, with f , g real valued functions on Zd. Then
(2.7) is equivalent to the Hamiltonian system

ż = J∇h, with h =
1

2
〈p, L+p〉 +

1

2
〈q, L−q〉 + 〈q, L̃p〉, (2.8)

where L+, L−, L̃ are infinite matrices with entries

L+(n, n) = −ω + 4|An|2 + 2(a2
n − b2n) + 2dδ, L+(n, n± êj) = −δ, j = 1, . . . , d, n ∈ Zd; (2.9)
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L−(n, n) = −ω+ 4|An|2 − 2(a2
n− b2n) + 2dδ, L−(n, n± êj) = −δ, j = 1, . . . , d, n ∈ Zd; (2.10)

L̃(n, n) = 4γanbn, n ∈ Zd. (2.11)

All entries corresponding to index pairs not specified by (2.9)-(2.11) are zero. By the above defini-
tions L±, L̃ are symmetric.

We also have

J =

[

0 I
−I 0

]

, H =

[

L+ L̃

L̃ L−

]

, (2.12)

where blocks correspond to real and imaginary parts of complex functions on Zd.

We are here interested in breathers obtained for |δ| small. Although there are theoretical existence
results for a wider parameter regime, these appear to be nonconstructive in that they do not yield
a systematic way to approximate the breather solution. On the other hand, for |δ| small breathers
can be essentially obtained by expansions in δ. Our goal is to extend the use of these expansions
to the stability question.

For |δ| small, solutions of (2.4) are obtained by continuation from solutions of (2.4) with δ = 0
(the “anticontinuous limit”). These solutions have the form

An = eiφn

√

ω

2
, for n ∈ U ; An = 0, for n ∈ U c, (2.13)

with ω > 0, U a finite subset of Zd, U c = Zd \ U , and φn ∈ R arbitrary.

The simplest continuation result for δ 6= 0 concerns real solutions of (2.4). Let Y = l2(Z
d,R)

with the inner product 〈f, g〉 =
∑

n∈Zd fngn. Y is a real Hilbert space.

Proposition 2.1 Consider a solution A(0) of (2.4) with δ = 0 that has the form (2.13) with φn = 0
or π, ∀n ∈ U . Then there exist δ̃ such that for |δ| < δ̃ equation (2.4) has a unique real solution
A(δ) ∈ Y that satisfies A(δ) → A(0) in Y . Moreover A(δ) is real analytic in δ, i.e. it is a real
analytic function from (−δ̃, δ̃) to Y .

Note that δ̃ will in general depend on A(0), U , and ω. Proofs (of slightly different versions)
of Proposition 2.1 are in [MA94], [PKF05a], [PKF05b], [PP08]. Analyticity implies that small |δ|
breathers can be obtained by starting with a power series Ansatz An(δ) = An,0+δAn,1+δ2An,2+. . .
and matching powers of δ. The term An,0 is given by (2.13). We refer to breathers obtained by
continuation from the δ = 0 solutions (2.13) as k−peak breathers, where k is the number of sites
in U . (U is the set of “active sites”.) The solutions of Proposition 2.1 are clearly examples of real
breathers. A theory on the continuation of solutions of (2.13) with arbitrary φn is developed in
[PKF05a], [PKF05b] (see also [PP08]).

3 Linear stability of real breathers

For the case of real breathers we may assume that the breather solution An is real, ∀n ∈ Zd. Then
L̃ vanishes and L+, L− simplify to

L+(n, n) = −ω + 6γA2
n + 2dδ, L+(n, n± êj) = −δ, j = 1, . . . , d, n ∈ Zd; (3.1)
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L−(n, n) = −ω + 2γA2
n + 2dδ, L−(n, n± êj) = −δ, j = 1, . . . , d, n ∈ Zd. (3.2)

Moreover H takes the block diagonal form

H =

[

L+ 0
0 L−

]

. (3.3)

For |δ| sufficiently small the convergent power series expansion of A in δ leads to formal expansions

L+ =

∞
∑

j=0

δjL+,j, L− =

∞
∑

j=0

δjL−,j, H =

∞
∑

j=0

δjHj. (3.4)

The L±,j are computed readily from (3.1), (3.2), and the expressions for the An.

For any real k−peak breather continued from a δ = 0 breather solution of (2.13), k = |U |, we
have

L−(n, n) = 0 +O(δ), ∀n ∈ U, L−(n, n) = −ω +O(δ), ∀n ∈ U c, (3.5)

L+(n, n) = 2ω +O(δ), ∀n ∈ U, L+(n, n) = −ω +O(δ), ∀n ∈ U c. (3.6)

Thus for δ = 0, the spectrum of H consists of the eigenvalues 0, and 2ω, both of multiplicity k,
and of the eigenvalue −ω, of infinite multiplicity. Furthermore the spectrum of JH consists of an
eigenvalue 0 of multiplicity 2k, and the eigenvalues ±iω, both of infinite multiplicity.

A heuristic analogy. In studying the spectrum of JH near δ = 0 it is useful to draw an analogy
with a model problem of mechanics. By (2.8), the Hamiltonian for ẇ = JHw is

h(q, p) =
1

2
〈p, L+p〉 +

1

2
〈q, L−q〉. (3.7)

For q, p ∈ Rn, with L+, L− symmetric real n × n matrices, L+, L− can be diagonalized by
orthogonal transformations U+, U− respectively. If in addition U+ = U− = U we have a canonical
transformation to variables q̃ = Uq, p̃ = Up for which

h(q, p) = h(U−1q̃, U−1p̃) =
1

2
〈p̃,Λ+p̃〉 +

1

2
〈q̃,Λ−q̃〉, (3.8)

with Λ+, Λ− diagonal and real. The stability of the linear system is then immediately understood
by examining the pairs of diagonal entries Λ+(j, j), Λ−(j, j), j = 1, . . . , n.

For the L± of (3.1), (3.2), the assumption U+ = U− should fail since L+, L− do not commute
for δ 6= 0. Ignoring this fact for the moment, we note that for δ = 0 the diagonal entries L+(n, n),
L−(n, n), n ∈ U c, are both negative and bounded away from zero. We expect that they will
correspond to (a suitable analogue of) negative eigenvalues of the perturbed L+, L−, and pairs of
imaginary eigenvalues for JH. We similarly expect that the positive eigenvalues corresponding to
the entries L+,0(n, n), n ∈ U , will be continued to positive eigenvalues of the perturbed L+. Linear
stability will then be determined by the sign of the continuation the zero eigenvalues of L−,0,
expected to be of O(δ). We will show that despite the differences, the model problem captures the
qualitative features of the present case.

Let Y = l2(Z
d,R) with the inner product 〈u, v〉Y =

∑

n∈Zd unvn. Let Yc be the complexification
of Y . Let X = l2(Z

d,C) with the inner product 〈u, v〉X =
∑

Zd [(Reun)(Revn)+(Imun)(Imvn)], i.e.
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X has a real Hilbert space structure. Let Xc = l2(Z
d,C2) be the complexification of X. Note that

X = Y ⊕ Y , and Xc = Yc ⊕ Yc. Also, let (ê(n))m = 1 if n = m; 0 otherwise. The set {ê(n)}n∈Zd is
the standard basis of Y . For L a linear operator in Y we let L(m,n) = L(ê(n))m.

Let M be a bounded operator in Yc, or Xc. We denote the spectrum of M by σ(M), and use the
standard notation σp(M), σc(M), σr(M) to denote the point, continuous, and residual spectra of M
respectively. We use the definition of [K76], p.243, for the essential spectrum σe(M) ofM . Algebraic
and geometric multiplicities are defined in the standard way for bounded operators in complex
Banach spaces (unless otherwise specified multiplicity below refers to algebraic multiplicity).

In what follows we fix U , ω, and a solution A(0) of the form (2.13). Let |δ| < δ̃. Consider A(δ)
as in Proposition 2.1, and the corresponding L±, JH. L± are bounded operators in Y (and Yc),
and JH is a bounded operator in X (and Xc). By (2.9) we can choose 0 < δ1 ≤ δ̃ such that L+ is
invertible ∀|δ| < δ1. Let δ0 = min{δ1, δ̃}. Also let YS denote the span of {ê(n)}S , with S ⊂ Zd. Let
PZ denote the orthogonal projection to a subspace Z of Y . For L a linear operator in Y , the matrix
representations PYU

L|YU
, PYUcL|YUc in the standard basis are referred to as the U , U c blocks of L

respectively.

Proposition 3.1 Consider the operators L−, L+ above, with 0 < |δ| < δ0. We have σc(L−) =
σc(L+) = [−ω,−ω + 4dδ] for δ > 0, and σc(L−) = σc(L+) = [−ω + 4dδ,−ω] for δ < 0. The point
spectrum of L− consists of k eigenvalues (counting multiplicity) that are analytic in δ, with 0 ∈
σp(L−), ∀δ ∈ (−δ0, δ0). The point spectrum of L− consists of k eigenvalues (counting multiplicity)
that are O(δ) close to 2ω.

Proof. By A ∈ l2(Z
d,R) we see that that the operator L− − (−ω − ∆) is Hilbert-Schmidt and

therefore compact. (ω means ω times the identity operator.) Then σe(L−) = σe(−ω−∆). Let δ > 0.
The set of bounded u : Zd → R, λ ∈ C, that satisfy the eigenvalue equation (−ω − ∆)u = λu
consists of uκ = eiκ·n, λκ = −ω − 4δd

∑d
j=1 sin2 κj

2 , with κ = [κ1, . . . , κd] ∈ [−π, π)d. The λ
corresponding to unbounded solutions are easily seen not to be in σ(−ω − ∆). We deduce that
σe(−ω − ∆) = σc(−ω − ∆) = [−ω,−ω + 4dδ] = σe(L−). Comparing the behavior at infinity of
solutions of the eigenvalue equations for L−, and −ω−∆, we see that the solutions of the equation
for L− can not decay at infinity. Therefore σe(L−) = σc(L−). The case δ < 0, and the result for
σc(L+) follow similarly.

Regarding the eigenvalues of L±, we note that the families L± = L±(δ) of (3.4) are real analytic
in δ, i.e. the series are convergent in the operator norm in Y . Since the L± are symmetric, and
the zero eigenvalue of L±(0) has geometric multiplicity k, L±(0) has k eigenvectors that are real
analytic in δ. Hence the k corresponding eigenvalues are real analytic in δ (for delta sufficiently
small). Also, by (2.4), (2.10), L−(δ)A(δ) = 0, ∀|δ| < δ0. �

Proposition 3.2 Consider the operator JH, with 0 < |δ| < δ0. Then σc(JH) consists of z ∈ C

with Rez = 0, Imz ∈ [−ω,−ω + 4dδ] ∪ [ω − 4dδ, ω], for δ > 0, and Rez = 0, Imz ∈ [−ω +
4dδ,−ω]∪ [ω, ω−4dδ], if δ < 0. Furthermore, σp(JH) consists of 2k eigenvalues (counting algebraic
multiplicity) that belong to a disk of radius o(1) around the origin. Moreover 0 ∈ σp(JH), ∀δ with
|δ| < δ0.
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Proof. The arguments for σc(JH) are similar to the ones in the proof of Proposition 3.1. In
particular, σe(JH) = σe(JH0), where

H0 =

[

−ω − ∆ 0
0 −ω − ∆

]

.

This follows from the observation that JH − JH0 is Hilbert-Schmidt. Examining the behavior at
infinity of the solutions of JHu = λu, and solving JH0u = λu explicitly, we see that σc(JH) =
σe(JH) = σe(JH0) = σc(JH0). The result follows from the calculation of σc(JH0).

The statement on the multiplicity of eigenvalues of JH follows from the fact that, for δ = 0, JH
has a zero eigenvalue of algebraic multiplicity 2k, and from the continuity of finite rank spectral
projections. The perturbed eigenvalues are of o(1) by the upper semicontinuity of finite algebraic
multiplicity eigenvalues under bounded perturbations (see [K], p. 208). Also, by Lemma 3.9, and
L−(δ)A(δ) = 0, we have the 0 ∈ σp(JH), ∀|δ| < δ0. �

To examine the eigenvalues of JH we consider the following assumptions.

A I There exists a smallest positive integer r for which the near-zero eigenvalues ρ1, . . . , ρk of
L− can be written as ρ1 = 0, ρ2 = c2δ

r2 +O(δr2+1), . . ., ρk = ckδ
rk +O(δrk+1), with cj 6= 0, rj ≤ r,

∀j = 2, . . . , k (i.e. multiple eigenvalues, if any, are repeated). We say that the zero eigenvalue of
L−(0) unfolds at order r.

A II Assume AI. Let r′ ∈ 1, . . . , r and consider the set I(r′) of all j ∈ {2, . . . , k} for which
ρj = cj′δ

r′ + O(δr
′+1), with cj′ 6= 0. Suppose further that for all nonempty I(r′) we have ca 6= cb,

for any a, b ∈ I(r′). Then we say that the zero eigenvalue of L−(0) unfolds nondegenerately at
order r.

Conditions AI, AII can be verified in an algorithmic way. The procedure we use is described in
the proof of Lemma 3.5..

Theorem 3.3 Let 0 ≤ |δ| < δ0. Assume that the zero eigenvalue of L−(0) unfolds at order r.
Then each cj , j = 2, . . . , k above corresponds to a pair of eigenvalues λj,± of JH. Assume δ > 0.

If cj > 0, then λj,± = ±i
√

2ωcjδ
rj
2 + O(δ

rj

2
+ 1

2 ). If cj < 0, then λj,± = ±
√

2ω|cj |δ rj2 + O(δ
rj

2
+ 1

2 ).
Also JH has a zero eigenvalue of algebraic multiplicity 2, ∀δ ∈ (−δ0, δ0). For δ < 0, the saddles
become centers and vice versa, with the formulas interchanged.

Thus, up to an error O(δ
rj

2
+ 1

2 ), the eigenvalues λj,± belong to either the real or the imaginary
axis. Assuming AII, we obtain a stronger statement.

Corollary 3.4 Let 0 ≤ |δ| < δ0. Assume that the zero eigenvalue of L−(0) unfolds nondegenerately
at order r. Then each cj , j ∈ I(r′), r′ ∈ {1, . . . , r}, corresponds to a pair of eigenvalues λj,± of

JH. Assume δ > 0. If cj > 0, then λj,± = ±i
√

2ωcjδ
rj
2 + O(δ

rj

2
+ 1

2 ) ∈ iR. If cj < 0 then

λj,± = ±
√

2ω|cj |δ rj2 + O(δ
rj

2
+ 1

2 ) ∈ R. For δ < 0, the saddles become centers and vice versa, with
the formulas interchanged.

To prove Theorem 3.3 we first use Lemmas 3.5, 3.7, 3.8 to calculate the eigenvalues of L− to any
desired order in δ. Lemma 3.9 relates the eigenvalues of JH, and L+L−, while Lemma 3.11 shows
how the expansions for the eigenvalues of L− yield expansions for the eigenvalues of L+L−.
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Lemma 3.5 Let |δ| < δ0. Let r > 1. There exists an orthogonal operator M̃ ∈ B(Y ) such that
L̃r− = M̃−1L−M̃ satisfies

L̃r−(m,n) = O(δr+1), ∀(m,n) with m ∈ U, n ∈ U c, or m ∈ U, n ∈ U c. (3.9)

Moreover, the U block of L̃r− is diagonal, up to an error of O(δr+1). The operator L̃r+ = M̃−1L−M̃

has the form L̃r+ = L+,0 +O(δ).

Proof. We can recursively define antisymmetric operators ψ1, . . . ψr, such that for any s = 1, . . . , r,
the operator

Ls− = e−δ
mψs . . . e−δψ1L−e

δψ1 . . . eδ
mψs (3.10)

satisfies

Ls−(m,n) = O(δs+1), ∀(m,n) with m ∈ U, n ∈ U c, or m ∈ U, n ∈ U c. (3.11)

ψs is chosen to satisfy

(L−,0(m,m) − L−,0(n, n))ψs(m,n) = f(m,n), (3.12)

∀(m,n) with m ∈ U , n ∈ U c or m ∈ U , n ∈ U c, where f is the coefficient of δs+1 in the expansion
of Ls−1

− . For all other m, n we choose ψs(m,n) = 0.

The U block of Lr− can be diagonalized recursively to O(δr+1) by a sequence of similarity trans-
formations by orthogonal block diagonal (with respect to the U , U c subspaces) operators T1, . . . , Tr.
The U c block of the Tj is the identity. The U block of the Tj is determined recursively so that it
diagonalizes T−1

1 . . . T−1
j−1L

r
−T1 . . . Tj−1 to O(δj+1). �

Remark 3.6 The above proof is a sketch of a normal form calculation. To determine T1 we must
calculate the eigenvalues and eigenvectors of a k × k matrix, i.e. a nonperturbative step. If L−(0)
does not unfold at order 1 we may need more calculations of this type, with matrices of size k′× k′,
k′ ≤ k. These calculations correspond to the metanormal form steps of [M02], ch. 2.

Thus similarity by M̃ decouples and diagonalizes the U block of L−, up to an error of O(δr+1).
In contrast, the U block of L̃r+ is neither decoupled from the U c block nor diagonalized to O(δr+1)
by this transformation.

The U block of L̃r− can be written as Λr− + O(δr+1), with Λr− diagonal. The diagonal entries of
Λr− are polynomials of order r in δ. By Lemma 3.8 below, these are precisely the lowest order terms
in the expansion for the eigenvalues in AI, AII. We first need the following analogue of Gershgorin’s
theorem.

Lemma 3.7 Let A be a bounded operator in Y , and let A(i, j) be the entries of its representation
in the standard basis. Let λ ∈ C be an eigenvalue of A, with corresponding eigenvector x ∈ Yc.
Then

|λ−A(i, i)||xi| ≤ (
∑

j∈Zd\{i}

|A(i, j)|2) 1

2 (
∑

j∈Zd

|xj |2)
1

2 , ∀i ∈ Zd, (3.13)

where x =
∑

j∈Zd xj ê(j).
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Proof. Consider the diagonal operator D with matrix entries D(i, i) = A(i, i), i ∈ Zd. From
Ax = λx we have (λ−A)x = (A−D)x, or

∑

j∈Zd

(λδij −D(i, j)) xj =
∑

j∈Zd

(A(i, j) −D(i, j)) xj, ∀i ∈ Zd. (3.14)

Since AT is bounded, and x ∈ Yc, (3.13) follows from (3.14), and the Schwartz inequality. �

The following lemma identifies the diagonal entries of Λr− with the expansions of AI, AII. (We
give a sketch of the proof.)

Lemma 3.8 Let |δ| < δ0. Let r > 1. Then the diagonal entries of the U block of L̃r− coincide, up
to an error of O(δr+1), with the eigenvalues ρ1, . . . , ρk of L−.

Proof. By Lemma 3.5 and the definition of Λr− we can write

L̃r− = N +O(δr+1), with N =

[

Λr− 0
0 D

]

, (3.15)

D a bounded operator in YUc, and O(δr+1) standing for a bounded operator with norm of size
O(δr+1). For each Λr−(j, j), j = 1, . . . , k, N has an eigenvector [yj, 0] ∈ YU ⊕ YUc , with yjj = 1,

and yji = 0 for i 6= j. By the continuity of spectral projections L̃r− has an eigenvector x̃j = [ỹj , z̃]

satisfying ỹjj = 1 + o(1), and ||x̃j ||Yc = 1 + o(1). Applying Lemma 3.7 to L̃r− and each x̃j we see

that the corresponding eigenvalue is Λr−(j, j) +O(δr+1), i.e. ρ0(j) + . . .+ ρr(j)δ
r +O(δr+1). These

are also the eigenvalues of L− by Lemma 3.5.

On the other hand, the analyticity of A in δ, and (3.2) implies that L− has eigenvalues of
∑∞

m=1 am(j)δm for |δ| < δ0, with j = 1, . . . , k. This follows by results on analyticity of eigenvalues
for analytic families of symmetric operators (see e.g. [K76], p.385).

The statement follows by showing that the coefficients of the two expansions are the same, i.e.
the ordered sets Sρ of the [ρ0(j), . . . , ρr(j)] and Sa of the [a0(j), . . . , ar(j)], j = 1, . . . , k, are the
same up to a permutation. Assuming that this is false we easily produce a contradiction with the
claim above that the eigenvalues of L− are Λr−(j, j) +O(δr+1). �

We now consider the operator L+L−.

Lemma 3.9 Let |δ| < δ0. If λ ∈ C is an eigenvalue of JH ∈ B(Xc), then −λ2 is an eigenvalue of
L̃r+L̃

r
− ∈ B(Yc). Conversely, if ρ̃ ∈ C is an eigenvalue of L̃r+L̃

r
− ∈ B(Yc), then any λ ∈ C satisfying

−λ2 = ρ̃ is an eigenvalue of JH ∈ B(Xc).

Proof. We first note that σp(L̃
r
+L̃

r
−) = σp(L+L−) since the two operators are similar by Lemma

3.5. Let v ∈ Xc satisfy JHv = λv. By (2.12), (3.3) this is equivalent to

L−p = λq, −L+q = λp, (3.16)

where v = [q, p], q, p ∈ Yc. By the invertibility of L+ we then have L+L−p = −λ2p, i.e. ρ̃ = −λ2

is an eigenvalue of L+L−. Conversely, suppose that L+L−p = ρ̃p for some ρ̃ ∈ C, p ∈ Yc. Let λ
satisfy −λ2 = ρ̃ and let q = −λL−1

+ p, v = [q, p] ∈ Xc. Then q, p satisfy (3.16) and therefore λ is an
eigenvalue of JH. �
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Remark 3.10 Note that L̃+L̃− is not normal and it may have residual spectrum. We will use
the weaker property that, assuming |δ| ≤ δ0, λ ∈ σp(L−L+) implies λ ∈ σp(L+L−): first note that
λ ∈ σp(L−L+) implies λ ∈ σp(L−L+) by the reality of L−L+. On the other hand, λ ∈ σp(L−L+)
also implies that λ ∈ σp(L+L−) ∪ σr(L+L−). Suppose that λ ∈ σr(L+L−). Then λ /∈ σp(L+L−).
Since L+ is invertible for |δ| ≤ δ0 we have σp(L+L−) = σp(L−L+) by a standard argument, hence
λ /∈ σp(L−L+), a contradiction.

Lemma 3.11 Let |δ| < δ0. Assume that the zero eigenvalue of L−(0) unfolds at order r and
consider the pairs of rj, cj, j ∈ {1, . . . , r} of AI. Then L̃r+L̃

r
− ∈ B(Yc) has k eigenvalues ρ̃j,

j = 1, . . . , k, with ρ̃1 = 0, and ρ̃j = 2ωcjδ
rj +O(δrj+1), j = 2, . . . , k.

Proof. Let

L̃r+ =

[

A+ B+

C+ D+

]

, L̃r− =

[

A− B−

C− D−

]

, (3.17)

with A±, D± the U , U c blocks respectively. By Lemma 3.5 we have

A+ = Λ1 +O(δ), B+ = O(δ), C+ = O(δ), D+ = Λ2 +O(δ), (3.18)

and
A− = Λr− +O(δr+1), B− = O(δr+1), C− = O(δr+1), D+ = Λ3 +O(δ). (3.19)

The operators Λ1, Λ2, Λ3 are diagonal, with nonzero entries of O(1). Then

L̃r+L̃
r
− =

[

Ã B̃

C̃ D̃

]

, (3.20)

where by (3.17)-(3.19)

Ã = (Λ1 +O(δ))Λr− +O(δr+1), B̃ = O(δ), C̃ = C+Λr− +O(δr+1), D̃ = Λ2Λ3. (3.21)

Let j ∈ U . The j−th column colj(Ã) of Ã is

colj(Ã) = 2ωcjδ
rj êj +O(δrj+1), (3.22)

where êj is the j−th column of the k × k identity matrix. The j−th column colj(C̃) of C̃ is

colj(C̃) = cjδ
rjC+êj = O(δrj+1), (3.23)

since C+ = O(δ). Also, we can write

(L̃r+L̃
r
−)T =

[

ÃT C̃T

B̃T D̃T

]

= M +O(δ), with M =

[

Λ1Λ
r
− 0

0 D̃T

]

. (3.24)

Λ1Λ
r
− is diagonal and its eigenvectors are the standard basis vectors in Rk. Then [y, 0] ∈ YU ⊕YUc ,

with y one of the eigenvectors of Λ1Λ
r
− is an eigenvector of M . Also y satisfies yj = 1, for some

j ∈ {1, . . . , k}, and yi = 0, for i 6= j. By the continuity of spectral projections (L̃r+L̃
r
−)T has an
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eigenvector x̃ = [ỹ, z̃] satisfying ỹj = 1 + o(1), ||x̃||Yc = 1 + o(1). Let ρ be the corresponding
eigenvalue. Then, by (3.22), (3.23), and Lemma 3.7

|ρ− Λ1Λ
r
−(j, j)| = O(δr+1), (3.25)

hence
|ρ− Λ1Λ

r
−(j, j)| = O(δr+1), (3.26)

since Λ1Λ
r
−(j, j) ∈ R, ∀j ∈ {2, . . . , k}. By Lemma 3.5 the L̃r± are symmetric, hence ρ ∈ σp(L̃

r
−L̃

r
+) =

σp(L−L+). Therefore ρ̃ = ρ ∈ σp(L+L−) by Remark 3.10. The estimates on the eigenvalues ρ̃j of
L+L− then follow from (3.26), and (3.22). �

Proof of Theorem 3.3. The formulas for the eigenvalues of JH follow from the formulas for the
ρ̃j in Lemma 3.11, and Lemma 3.9. �

Proof of Corollary 3.4. It is enough to show that if λ is an eigenvalue of JH the so are −λ, λ,
and −λ, as in finite dimensions. For −λ we argue using Lemma 3.9: by the lemma ρ = −λ2 is an
eigenvalue of L+L−, hence −λ is an eigenvalue of JH, also by the lemma. For λ we use the reality
of JH, and −λ follows immediately. �

Remark 3.12 For k ≥ 2 we see that, even in the case of linear stability, the operator H is neither
positive nor negative definite for we can find eigenvalues and points in the continuous spectrum
with opposite signs.

4 Examples

The above theory applies to any real breather. In practice the computations can be long. Also, the
step of diagonalizing the U block or some of its sub-blocks may require numerical computation (see
Remark 3.6). In contrast to a direct numerical computation of the spectrum of JH, we only may
require a numerical calculation for the coefficients the fractional powers of δ. This is an advantage
in accuracy over the direct computation of the eigenvalues of JH.

Remark 4.1 Two distinct sites n, n′ ∈ U ⊂ Zd are g−neighbors if distd(n, n
′) = |n1 − n′1| +

. . . + |nd − n′d| = g. The number G(U) is the smallest g such that all sites of U have at least one
g′−neighbor, g′ ≤ g. Observe that L− can only unfold at some order r ≥ G(U).

Below we present some simple examples where the calculations can be done by hand. We examine
a 2−peak breather in Z, and a 3−peak breather in Z2.

Example 1: Two consecutive peaks in Z.

Let U = {0, 1} ⊂ Z. We continue two breather solutions denoted (+,+), (+,−) that are
respectively obtained by continuation from the δ = 0 solutions

A0(0) =

√

ω

2
, A1(0) = ±

√

ω

2
, An = 0, ∀n ∈ U c. (4.1)
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For the (+,+) breather we compute

A0(δ) =

√

ω

2
−

√

1

8ω
δ +O(δ2), A1(δ) =

√

ω

2
−

√

1

8ω
δ +O(δ2), (4.2)

and An(δ) = O(δ), ∀n ∈ U c. Then

L−(n, n) = 4An,0An,1δ + 2δ +O(δ2), n ∈ U ; L−(n, n) = −ω +O(δ2), n ∈ U c. (4.3)

The U block L−|U of L− is then

L−|U = δ

[

1 −1
−1 1

]

+O(δ2). (4.4)

Choosing suitable ψ1, the U , and U c blocks of L1
− are decoupled up to an O(δ2). The U block

of L1
− is L−|U , up to an O(δ2). The eigenvalues are 0, 2δ, up to O(δ2). Therefore JH has

a double zero eigenvalue, and the pair of eigenvalues ±i(2√ωδ 1

2 + O(δ
3

2 )) ∈ iR for δ > 0, or

±(2
√
ωδ

1

2 +O(δ
3

2 )) ∈ R for δ < 0.

For the (+,−) breather we have

A0(δ) =

√

ω

2
−

√

9

8ω
δ +O(δ2), A1(δ) = −

√

ω

2
−

√

9

8ω
δ +O(δ2), (4.5)

and An = O(δ), ∀n ∈ U c. Also L− is given by (4.3), (4.5). The U−block L−|U of L− is then

L−|U = δ

[

−1 −1
−1 −1

]

+O(δ2). (4.6)

Similarly decoupling the U , U c blocks to O(δ2), the U block of L− remains unchanged and we
have the eigenvalues 0, −2δ, up to O(δ2). Thus JH has a double zero eigenvalue, and the pair of

eigenvalues ±(2
√
ωδ

1

2 +O(δ
3

2 )) ∈ R for δ > 0. The (+,−) solution is therefore unstable for δ > 0,
and stable for δ < 0.

Example 2: Three peaks in Z2.

Let U = {(0, 1), (0, 0), (1, 0)} ⊂ Z2. We continue two breather solutions denoted (+,+,+),
(−,+,+) that are respectively obtained by continuation from the δ = 0 solutions

A(0,1)(0) = ±
√

ω

2
, A(0,0)(0) = A(1,0)(0) =

√

ω

2
, An(δ) = 0, ∀n ∈ U c. (4.7)

For the (+,+,+) breather we have

A(0,1)(δ) =

√

ω

2
− 3

2
√

2ω
δ +O(δ2), A(0,0)(δ) =

√

ω

2
− 1√

2ω
δ +O(δ2), (4.8)

A(1,0)(δ) =

√

ω

2
− 3

2
√

2ω
δ +O(δ2), (4.9)
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and An(δ) = O(δ), ∀n ∈ U c. The U block L−|U of L− is then

L−|U = δ





1 −1 0
−1 2 −1
0 −1 1



 +O(δ2). (4.10)

Column and row indices 1, 2, 3 correspond to sites (0, 1), (0, 0), (1, 0) respectively. Choosing suitable
ψ1, the U−, U c blocks of L1

− are decoupled, up to an O(δ2) error. The U block of L1
− is L−|U up

to an O(δ) error. The eigenvalues are 0, δ + O(δ2), 3δ + O(δ2), therefore JH has a double zero
eigenvalue, and two pairs of imaginary of eigenvalues for δ > 0 (or two pairs of positive/negative
eigenvalues for δ < 0). We thus have stability for δ > 0, and instability for δ < 0.

For the (−,+,+) breather we have

A(0,1)(δ) = −
√

ω

2
+

5

2
√

2ω
δ +O(δ2), A(0,0)(δ) =

√

ω

2
− 2√

2ω
δ +O(δ2), (4.11)

A(1,0)(δ) =

√

ω

2
− 3

2
√

2ω
δ +O(δ2), (4.12)

and An = O(δ), ∀n ∈ U c. The U block L−|U of L− is then

L−|U = δ





−1 −1 0
−1 0 −1
0 −1 1



 +O(δ2). (4.13)

Column and row numbering is as in (4.10). Choosing suitable ψ1, the U , U c blocks of L1
− are

decoupled, up to an O(δ2) error. The U block of L1
− is L−|U up to an O(δ) error. The eigenvalues

are 0, ±
√

3δ, up to O(δ2). Thus the breather is unstable for δ 6= 0.

5 Discussion

We have presented a method for analyzing the linear stability of real breathers of the DNLS near
the limit of vanishing intersite coupling. Our results can be used directly to show the persistence
of breathers in perturbed DNLS equations, e.g. in the DNLS with weak parametric forcing, see
[P07], [PP08]. We also believe that the method we used here can be extended to the study of more
general breathers.

A natural question arising from this study is that of the nonlinear stability of near-anticontinuous
limit breathers. In the case of linearly stable breathers the linear stability analysis is not conclusive,
see Remark 3.12. One scenario that should be checked is nonlinear stability due to the dispersive
effects of the continuous spectrum. In the case of linearly unstable breathers it could be useful to
study the evolution of the phases, expecting that for certain sets of active sites, stable breathers
“attract” nearby unstable ones. Questions of this type will be considered in further work.
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