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Abstract.

We study the existence breather-type localized solutions in the discrete NLS equation

with high frequency time-periodic parametric forcing. The question is formulated as a

problem of persistence for breathers of an autonomous averaged equation that approxi-

mates the full system. We show that single-peak breathers of the averaged equation with

vanishing residual diffraction and small forcing amplitude to forcing frequency ratio can

be continued to periodic or quasiperiodic solutions of the full system, provided that the

frequency is sufficiently large. We also present numerical results on possible extensions of

the theory to wider classes of breathers.
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1. Introduction

In this paper we show the existence of localized periodic and quasiperiodic solutions in

a discrete NLS equation with high frequency periodic parametric forcing. The equation we

consider is also known as the discrete NLS with diffraction management and was originally

proposed by [AM] to describe light propagation in an array of coupled waveguides with

the experimental geometry studied by [ESMA].

Localized solutions of the parametrically forced discrete NLS model of [AM] have been

primarily studied through an autonomous system, referred to as the averaged system, that

approximates the full system in the high frequency forcing regime (see [M]). The averaged

equation has localized breather solutions (see [M], [P2]), as well as multipeak breather

solutions (see [P3]) and a natural question is whether such breather solutions can be

continued (in an appropriate sense) to solutions of the full nonautonomous system.

In the present work we consider the continuation question for single-peak breather

solutions of the averaged equation with vanishing residual diffraction and small forcing

amplitude (β) to forcing frequency (Ω) ratio. We show that such breathers can be contin-

ued to periodic and quasiperiodic solutions of the full system, provided that the forcing

frequency is sufficiently large. The result can be also interpreted in terms of the time−T
map of the nonautonomous full system, where T = 2π

Ω
is the period of the forcing. In par-

ticular, we show the existence of invariant circles of an appropriate iterate of the time−T
map of the full system that are Ω−1−close to the breather orbit of the averaged equation.

A related problem is that of continuing breathers of the discrete NLS to solutions

of the parametrically forced NLS of [AM] with small amplitude parametric forcing, i.e.

with Ω fixed and β small. In the small amplitude forcing regime we have shown (see

[P4]) an analogous continuation result for single-peak breathers of the anticontinuous limit

NLS by developing a framework that can be used to answer the continuation question

for more general breather solutions of the discrete NLS. An extension of the continuation

results to a class of multi-peak breathers is presented in [PP] (see also [P4] for some

numerical evidence). In the high frequency case we follow a similar plan, considering first

the continuation problem for the simplest breather and expecting to extend the results to

other breathers in further work.

The continuation of breathers relies on an infinite-dimensional version of a result of

[N] and [BG] on the continuation of invariant tori in Hamiltonian systems with additional
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conserved quantities (see [BV] for another application). In the case of small amplitude

time-periodic perturbations of the discrete NLS the idea is to first write the full system as

an autonomous Hamiltonian system in an extended phase space and view the parametric

forcing term as a perturbation of the discrete NLS Hamiltonian. Breathers of the discrete

NLS can be then interpreted as invariant 2−tori and we want to show the existence of

nearby invariant 2−tori in the perturbed system. To continue the tori we must verify a

nonresonance condition on the Floquet spectrum of a linear combination of the Hamiltonian

flows of the Hamiltonian, and an additional integral of the discrete NLS. In the high

frequency case we arrive at a similar setup by applying a symplectic change of coordinates

that transforms the original system to the averaged equation plus a T−periodic remainder

of size O(Ω−1). (The change of coordinates is defined in a neighborhood of the origin that

is independent of Ω for large Ω.) The unperturbed system is then the averaged equation

and the 2−tori correspond to its breather solutions. The goal is to continue the 2−tori to

the system that contains the remainder.

In contrast to the small amplitude case, where the amplitude of the parametric forcing

does not appear in the discrete NLS, in the high frequency continuation problem the “small

parameter” Ω−1 that controls the size of the perturbation also appears in the averaged

equation and affects the distance from the resonance. Instead we replace Ω−1 in part of

the perturbed Hamiltonian by an artificial parameter ǫ and show that the continuation is

possible for |ǫ| < ǫ0, with an ǫ0 > 0 that can be chosen independently of Ω for Ω sufficiently

large (i.e. for Ω > Ω0 for some Ω0 > 0). The perturbed invariant 2−tori we find imply the

existence of invariant circles of iterates of the time−T map of the perturbed system. The

number of iterates is roughly proportional to Ω so that the time required to return to the

invariant circle is independent of Ω. As in the small amplitude case, the invariant circles

are near the breather orbits of the averaged equation.

The continuation is shown for arbitrary forcing amplitude β and we also discuss the

dependence of Ω0 on β. We speculate that the continuation argument should be valid for a

region below a line through the origin in the Ω-β plane. In the current continuation proof

the slope of this line is assumed small, however this restriction seems to be technical. The

possiblity of extending the continuation results to more breathers is examined numerically.

The paper is organized as follows. In chapter 2 we formulate the breather continuation

problem for small amplitude parametric forcing, state a theorem on continuation of tori in

equivariant Hamiltonian systems, and apply it to a simple case. In chapter 3 we formulate

the breather continuation problem for high frequency parametric forcing and state the
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main continuation result of the paper. Two preliminary steps are the definition of the

symplectic transformation that leads to the averaged equation, and a statement on the

existence of single-peak breathers. We then formulate and prove the auxiliary continuation

statement that involves the artificial parameter ǫ. We also present some numerical results

on possible extensions of the theory. In chapter 4 we show the theorem on continuation

of tori in equivariant Hamiltonian systems. In the proof we make explicit the quantities

that determine the size of the forcing amplitude threshold ǫ0 and show that they can be

bounded uniformly in Ω, for Ω sufficiently large. Chapter 5 contains some technical lemmas

used in chapter 4.

2. Localized solutions for small amplitude forcing

We consider the parametrically forced discrete cubic nonlinear Schrödinger equation

(2.1) ∂tu = iD(t)∆u− 2iγg(u), with

(2.2) (∆u)j = uj+1 − 2uj + uj−1, gj(u) = |uj |2uj

and u a complex valued function on the integers Z. (fj denotes the value of f : Z → C

at the site j.) Also, γ is a real constant and D is a T−periodic real valued function (for

some T > 0). We also write

(2.3) D(t) = D + D̃(t), where D =
1

T

∫ T

0

D(τ)dτ

is the average over the period.

Equation (2.1)-(2.2) is a non-autonomous Hamiltonian system in X = l2(Z
d,C), the

set of square-summable complex valued functions on Z with the real inner product 〈u, v〉 =

Re
∑

n∈Z unv
∗
n, and corresponding norm ||.||. The Hamiltonian structure is specified below.

Physically, t in (2.1) is the distance along the waveguides, and uj is the complex amplitude

of (any) one of the components of the electric field at the waveguide j (see [AM], [ESMA]).

The initial condition u(t0) for (2.1) is the emitted light.

Our goal is to examine the existence of localized periodic or quasiperiodic localized

solutions of (2.1). The strategy be will be to consider (2.1) as a perturbation of a simpler

system with known periodic localized solutions of breather type. The existence of localized
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periodic or quasiperiodic localized solutions of (2.1) is then formulated as a continuation

problem.

This general strategy is applied to two parameter parameter regimes where the systems

that approximate (2.1) are different. In this chapter we consider simpler the case where

the amplitude of the function D̃ is small. We thus set D̃ = ǫd̃(Ωt), Ω = 2π
T

, with d̃ a

2π−periodic function with zero average and consider the limit of ǫ→ 0. System (2.1) with

ǫ = 0 is referred to as the discrete NLS. Breathers are solutions of the discrete NLS that

have the form un = e−iλA, with λ ∈ R, A ∈ X . There are several results on the existence

of breather solutions and we here formulate and show and answer the continuation problem

for a simple example that is easily tractable and illustrates the main idea. Extensions are

developed elsewhere. The main tool, Theorem 2.2, is also used in the next section where

we consider the high frequency forcing case.

To formulate the small amplitude forcing problem we write (2.1)-(2.2) with the initial

condition u(t0) = v ∈ X as

(2.4) ∂tu = iD∆u− 2iγg(u) + ǫd(φ)∆u, φ̇ = Ω,

φ ∈ S1, with the initial condition u(0) = v, φ(0) = φ0. Equation (2.4) is written as

a Hamiltonian system by adding an extra variable J ∈ R. The phase space will be

X × S1 ×R. The Hamiltonian Hǫ is

(2.5) Hǫ = −ΩJ +
∑

j∈Z

(

(D + ǫd(φ))|uj+1 − uj |2 + γ|uj|4
)

,

and we formally obtain (2.4) by the first two of Hamilton’s equations

(2.6) ∂tu = −i∂Hǫ

∂u∗
, φ̇ = −∂Hǫ

∂J
, J̇ =

∂Hǫ

∂φ
.

To simplify we assume that D = 0. Let ǫ = 0. Then for any n0 ∈ Z, A ∈ C \ {0}, and

φ0 ∈ S1 we have the “one-peak” breather solution

(2.7) un0
(t) = e−iλtA with λ = 2γ|A|2; un(t) = 0, ∀t ∈ R if n 6= n0;

(2.8) φ(t) = Ωt+ φ0; J(t) = 0, ∀t ∈ R.

The choice J = 0 is arbitrary. Let C(n0, A, φ0) be the set of points of X × S1 × R in the

orbit defined by (2.7), (2.8). Also let Λ0(n0, A) = ∪φ0∈S1C(n0, A, φ0). The set Λ0(n0, A)
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is an invariant 2−torus of the ǫ = 0 system, e.g. the torus is foliated by periodic orbits if
λ
Ω

is rational. We now consider (2.6) with |ǫ| small.

Proposition 2.1 Consider n0 ∈ Z, A ∈ C \ {0}, and the set Λ0(n0, A) as above. Let

r be an integer, r ≥ 2, and suppose that the 2π−periodic function d above is Cr in R.

Assume that λ
Ω /∈ Z, where λ = 2|γ||A|2 (and Ω 6= 0). Then there exist ǫ0, β0 > 0 such

that for any ǫ with |ǫ| < ǫ0 the corresponding system (2.4) has a Cr 2−parameter family

of invariant 2−tori Λǫ,β , with β ∈ (−β0, β0)
2, and Λ0,0 = Λ0(n0, A) . The motion on each

torus is periodic or quasiperiodic (with two quasiperiods). Also, for any ǫ ∈ (−ǫ0, ǫ0) there

is a two-parameter family of Cr functions fǫ,β : Λ0(n0, A) → X × S1, β ∈ (−β0, β0)
2 with

Λǫ,β = fǫ,β(Λ0(n0, A)), and f0,0(Λ0(n0, A)) = Λ0(n0, A).

Proposition 2.1 was shown in [P4] and is also included here. The proof is based on

Theorem 2.2 below.

To set up Theorem 2.2, let r be an integer, r ≥ 2, and consider a real Cr Hilbert

manifoldM modeled on a real (separable) Hilbert space E with inner product 〈 , 〉. Assume

that M also has a weak symplectic structure ω with corresponding Poisson bracket { , }.
Consider s real functions Hǫ

1, . . ., H
ǫ
s on M that have the form Hǫ

j = H0
j + ǫH̃j , j = 1,

. . ., s. (The parameter ǫ is real and the H0
j , H̃j are independent of ǫ.) The Hamiltonian

vector fields of Hǫ
j , H

0
j , H̃j are respectively denoted by Xǫ

j , X
0
j , X̃j, j = 1, . . ., s. We are

assuming that s is finite, and in the case of dim(M) = 2n that also 1 ≤ s ≤ n. We further

assume that there exists ǫ̃ > 0 such that for any ǫ ∈ (−ǫ̃, ǫ̃) the following hold:

A I The Hamiltonian vector fields Xǫ
j of the Hǫ

j , j = 1, . . ., s are Cr, and their time−t
maps exist and are Cr in M , ∀t ∈ R.

A II There exists an s−dimensional torus Λ that is invariant under the Hamiltonian flows

of the H0
j , j = 1, . . ., s. Moreover, Λ is a Cr submanifold of M and has a Cr tubular

neighborhood in M .

A III The Hǫ
j , j = 1, . . ., s mutually Poisson commute and are functionally independent

in a neighborhood of Λ in M .

We are interested on on whether the invariant torus Λ of X0
1 can be continued to an

invariant torus of the perturbed system Xǫ
1 for |ǫ| sufficiently small. First note that given

any α ∈ π1(Λ) ≃ Zs there exists a c = [c1, . . ., cs] ∈ Rs such that the integral curves of the

restriction of the vector field K0(α) =
∑s
j=1 cjX

0
j to Λ are 1−periodic orbits that belong
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to the homotopy class α. Denote the time−1 map of K0(α) by gc0. The Fréchet derivative

Dgc0(m) of gc0 at any m ∈ Λ is a bounded linear operator in E ≃ TmM . It is easily seen

that the derivatives at two different points of Λ are related by a similarity transformation.

The spectrum of Dgc0(m) in E is therefore independent of the point m ∈ Λ and will be

denoted by σ(Dgc0).

Theorem 2.2 Consider the functions Hǫ
j , j = 1, . . ., s as above and assume that

there exists α ∈ π1(Λ) and a corresponding vector c = c(α) ∈ Rs with the property that

σ(Dgc0) has exactly s eigenvalues that are unity and that σ(Dgc0)\{1} lies outside an open

disc around 1. Then there exist ǫ0, β0 > 0 such that for any ǫ with |ǫ| < ǫ0 there exists

an s−parameter family of s−tori Λǫ,β , β ∈ (−β0, β0)
s, that are invariant under the flow of

each of the Xǫ
j , j = 1, . . ., s. The motion on each Λǫ,β is periodic or quasiperiodic (with

at most s quasiperiods). The family Λǫ,β is also Cr in β and there exists β∗ ∈ (−β0, β0)
s

for which Λ0,β∗

= Λ.

Theorem 2.2 is a generalization of results of [N], [BG] and is proved in [P4] using the

Poincare map construction of [BG]. We here give a different version of the proof. The goal

is to understand better the particular case of Proposition 2.1, and especially how ǫ0, and

β0 depend on the parameters of equation (2.1).

Proof of Proposition 2.1: Let M = X×S1×R, and Hǫ
1 = Hǫ, with Hǫ as in (2.5). The

corresponding Hamiltonian vector field is denoted by Xǫ
1. Also, let Λ = Λ0(n0, A), with

Λ0(n0, A) as defined by (2.7). Thus is Λ is a 2−torus that is invariant under the vector

field X0
1 . Also let P =

∑

j∈Z |uj |2 and define a second family of functions Hǫ
2 by Hǫ

2 = P ,

∀ǫ ∈ R. The corresponding Hamiltonian vector field is denoted by Xǫ
2. We observe Λ

is also invariant under X0
2 and we check that Hǫ

1, H
ǫ
2 satisfy the conditions AI-AIII of

Theorem 2.2. To verify the nonresonance condition for the Floquet map of an appropriate

linear combination of X0
1 , X0

2 we parametrize Λ ∈ M and define the function A : Z → C

by An0
= A, An = 0 for n 6= n0. Then

(2.9) Λ = {[eiθA, φ, 0] ∈ X × S1 × R : θ ∈ R, φ ∈ S1}.

Also, given any F : M → R, let gtF be the time−t maps of the flows of the Hamiltonian

vector field of F . On Λ we then have

(2.10) gtH0

1

([eiθA, φ, 0]) = [ei(θ−λt)A, (φ+ Ωt)mod2π, 0],

(2.11) gtH0

2

([eiθA, φ, 0]) = [ei(θ−t)A, φ, 0].
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Also, gtcF = gctF , ∀c ∈ R, therefore the time−t map of the Hamiltonian vector field of

c1H0 + c2P is gc1tH0
gc2tP . Using (2.10), (2.11) we therefore see that the condition for the

orbits of the Hamiltonian vector field of c1H0 + c2P to be 1−periodic on Λ and to belong

to the homotopy class [n1, n2] ∈ Z2 is that −c1λ− c2 = 2πn1, and c1Ω = 2πn2, hence

(2.12) c1 = n2

2π

Ω
, c2 = −2πn1 − n2

2πλ

Ω
.

To calculate the Floquet map around any such 1−periodic orbit, i.e. Dgc0, let

(2.13) u = e−i(c1λ+c2)teiθA + w, φ = c1Ωt+ φ0 + ψ, J = I,

with A as above. Using (2.1), (2.5), (2.6) and keeping only linear terms we obtain the

variational equation for ẇ, ψ̇, İ. The variational equation is made autonomous by the

change of variables v = ei(c1λ+c2)tw. We obtain

(2.14) v̇n = ic1λvn, n ∈ Z \ {n0}

(2.15) v̇n0
= −ic1λ(vn0

+ v∗n0
), ψ̇ = 0, İ = 0.

Since v = w at t = 1, the Floquet map around the 1−periodic orbit coincides with the

time−1 map of the equations for v̇, ψ̇, İ. The spectrum of the time−1 map of the linear

system (2.14)-(2.15) is calculated readily since the system is block diagonal with 2 × 2

blocks: the second and third equations of (2.15) yield two unit eigenvalues. The first

equation of (2.15) yields another pair of unit eigenvalues. Finally, equations (2.14) yield

the pair of eigenvalues e±2πin2
λ
Ω for each integer n 6= n0. Choose [n1, n2] = [−1, 1]. Then,

by our assumption that λ
Ω /∈ Z we have exactly 4 unit eigenvalues with the rest of the

Floquet spectrum bounded away from unity and the proposition follows from Theorem

2.2.

Note that each invariant 2−torus Λǫ,β ⊂ X × S1 × R of the Hamiltonian system

(2.6) obtained by Proposition 2.1 after verifying the nonresonance condition associated to

a homotopy class α = [n1, n2] projects to an invariant 2−torus Λǫ,β ⊂ X × S1 of the first

two equations of (2.6). From the proof of Theorem 2.2 (see also [P4], Proposition 2.3) we

see that this projection yields a 1−parameter family of 2−tori Λǫ,β (see [P4], Proposition

2.3). (The parameter corresponds to the l2 norm of the X component.) We furthermore
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see that the intersection of any Λǫ,β with any hyperplane X×{φ0} is an invariant circle of

the time−n2T map of the flow of (2.1). Each of the circles we obtain by varying φ0 belongs

to a 2−dimensional plane through the origin in X and is centered at the origin of X . The

plane generally depends on θ0. Also the time−n2T map of the flow of (2.1) induces a rigid

rotation on the circles. A more complete discussion of geometrical interpretation of the

tori and the choice of homotopy class is presented in [P4].

The setup of the proof of Proposition 2.1 works for more general breathers: for

un = e−iλtA, A ∈ X , a solution of (2.1) with D̃ ≡ 0, D ∈ R (the discrete NLS), the

parametrization of the torus Λ in (2.9), the expressions for the actions in (2.10), (2.11),

and the c1, c2 in (2.12) are the same as for the example of Proposition 2.1. The variational

equation is different: using (2.13), and the change of variables v = ei(c1λ+c2)tw, we obtain

(2.16) v̇n = c1[iλvn + iD(∆v)n − 2iγ((An)2v∗n + 2|An|2vn)].

Further study the spectrum of the right hand side of (2.16) allows us to extend the con-

tinuation results to other types of breathers, e.g. multipeak breathers. Some extensions

are presented in [PP] (see also [P4] for a numerical study).

3. Localized solutions for high frequency forcing

We now study the continuation question in the parameter regime where the oscillating

part D̃ has high frequency. Specifically, let D̃(t) = βd̃(Ωt), with d̃ a 2π−periodic function,

β > 0, and Ω = 2π
T
> 0. Thus, in contrast to the parameter range of Proposition 2.1, we

here fix β, and the function d̃ and consider Ω large.

To set up the continuation problem we first consider (2.1) and define the new variable

b by

(3.1) u(t) = L̃tb(t), with L̃t = eiΛ̃(t)∆, and Λ̃(t) =

∫ t

0

βd̃(Ωτ)dτ.

By (3.1), (2.1) the evolution equation for b is then

(3.2) ∂tb = iD∆b− 2iγL̃†
tg(L̃tb),

with the initial condition b(t0) = b0 = L̃−1
t0
u(0). Note that L̃−1

t = L̃†
t = eiΛ̃(t)∆. System

(3.2) is equivalent to the autonomous system

(3.3) ∂tb = iδ∆b− 2iγL†
φg(Lφb), φ̇ = Ω,
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where δ = D, and Lφ = L̃ φ

Ω

. The initial condition is b(0) = b0, φ(0) = φ0. The fact that

L̃t is T−periodic in t implies that Lφ, and the cubic nonlinearity in (3.3) are 2π−periodic

in φ. In the range where δ, γ are O(1) and Ω is large we can heuristically approximate

(3.3) by the averaged system

(3.4) ∂ta = iδ∆a− 2iγgL(a), φ̇ = Ω with gL(a) =
1

2π

∫ 2π

0

L†
θg(Lθa)dθ.

The dependence on the angle φ has been therefore averaged out of the nonlinearity.

Remark 3.0.1 The averaged equation can be also defined without introducing the

angle φ. In particular, we have gL(a) = 1
T

∫ T

0
L̃†
τg(L̃τa)dτ . We also note that the rescaling

β → sβ, Ω → sΩ leaves gL invariant and that β
Ω
→ 0 implies that supt∈R|Λ̃(t)| → 0. Thus,

for any fixed 2π−periodic function d̃, the nonlinearity gL(v) depends only on the ratio β
Ω

.

Denote the set of bounded linear operators in X by B(X) and let || · ||0 denote the

operator norm on B(X). For Λ̃ bounded, the exponential in (3.1) is well defined and

Lt ∈ B(X), for all t ∈ R. The fact that Λ̃(t)∆ is a one-parameter family of bounded

operators also implies that the map t 7→ Lt from R to B(X) is norm continuous in R.

This follows from basic results on the abstract Cauchy problem (see e.g. [F], ch. 7). The

operators Lt also depend on Ω (this is not explicit in the notation at this point). Fixing

the 2π−periodic function d̃ and scaling Ω outside the integral of (3.1), we see that for any

fixed t ∈ R, the maps Ω 7→ Lt from R+ to B(X) are norm continuous in R+. Since Lt is

T−periodic in t, the continuity is uniform in t ∈ R.

Both (3.2) and (3.3) can be made formally into a Hamiltonian system in the standard

way, adding a real variable J as before. For instance, the Hamiltonian H for (3.4) is

(3.5) H = −ΩJ +
∑

j∈Z

(

δ|aj+1 − aj |2 +
γ

2π

∫ 2π

0

|(Lψa)j |4dψ
)

,

The Hamiltonian structure is as in chapter 2 and its meaning can be made rigorous using

the boundedness of the operators Lt and the norm continuity of the family Lt in t men-

tioned above. Also, we can show that there exists a symplectic change of variables which

transforms (3.2) into (3.3) plus a small term that depends on φ. Let BR denote the ball

of radius R in X . We have:

Proposition 3.1 Assume that d̃ is piecewise continuous, |δ|, |γ| < C1. Let b(t) be a

solution of (3.3). There exists Ω1 > 0 such that if Ω > Ω1 there exist ρ > 0 independent
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of Ω, and a symplectic map T : Bρ × S1 × R → X for which the variable a defined by

b = T (a), a ∈ Bρ, satisfies

(3.6) ∂ta = iδ∆a− 2iγgL(a) +
1

Ω
g̃1(a, φ), φ̇ = Ω,

where g̃1(a, φ) is 2π−periodic in φ and satisfies

(3.7) ||g̃1(v, φ)|| < C, ∀a ∈ Bρ, ∀φ ∈ S1

with C > 0 that depends on C1, and ρ (and is independent of Ω, and β). In the case

where d̃ is Cr, r ≥ 2, then g1 is Cr in Bρ × S1 × R. Furthermore, let H̃ = H ◦ T be the

Hamiltonian in the new coordinates, and P̃ = P ◦ T . Then P̃ = P .

The proposition follows from the normal form arguments in [P1] and we only sketch

the formal part. We work in X × R × R, the covering space of the extended phase space

X × S1 × R. The Hamiltonian H corresponding to (3.3) is written as H = h0 + h2 + h4,

where h0 = −ΩJ , with h2, h4 the quadratic, and quartic parts (in u) respectively. The

time−1 map T of the the Hamiltonian flow of S changes H to

(3.8) H ◦ T = −ΩJ + h2 + h4 + [S,−ΩJ ] +R,

where the remainder R contains the remaining terms. We want to choose S so that

h4 + [S,−ΩJ ] = h4, where h4 is the quartic term of H in (3.5), and [, ] is the Poisson

bracket in the extended phase space. The solution is

(3.9) S(u, φ) =
1

Ω

∫ φ

0

[

h4(u, ψ)− h4(u)
]

dψ.

The fact that S is independent of J implies that φ ◦ T = φ. The new Hamiltonian can be

written as

(3.10) H ◦ T = −ΩJ + h2 + h4 +R, with

(3.11) R = ((expS)h2 − h2) + ((expS)h4 − h4) + ((expS)h0 − h0 − [S, h0]) .

The term Ω−1g̃2 in (3.6) is the Hamiltonian vector field of R. The size of each of the three

terms of R is determined respectively by the size of [h2, S], [h4, S], and [[S, h0], S] = [h4, S],

each of O(Ω−1). The rigorous estimates of the Hamiltonian vector field of R follow from

analogous estimates of T and its derivative in [P1] (and can be also reconstructed from
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the the lemmas of chapter 5). We also see that we can choose ρ is independent of Ω. The

Cr regularity of the remainder vector field can be shown starting from the expression for

R in (3.11).

Also, (3.9), the fact that P is independent of φ, and [h4, P ] = [h4, P ] = 0 imply that

[P, S] = 0. Therefore P ◦ T = P .

We are interested in continuing breather solutions of the averaged equation. There

are several existence results for breather solutions of (3.4), and we first consider the case

δ = 0, where we also have multi-peak breather solutions. Let n0 ∈ Z, A ∈ C \ {0} and set

λ = −γ|A|2. Define A : Z → C by An0
= A, An = 0 if n 6= n0. (The dependence of A on

n0, A is not made explicit here.)

Proposition 3.2 There exists Ω2 > Ω1 such that the averaged equation (3.4) with

Ω > Ω2 has a unique breather solution a = Ae−iλt that satisfies ||A−A|| → 0 as Ω → ∞.

The breather amplitude A depends on Ω, n0, and A.

Remark 3.2.1 In Proposition 3.2, β is assumed fixed. By Remark 3.0.1, the breather

solutions for the averaged equation also exist for β
Ω sufficiently small.

We now combine the above statements to set up the continuation problem. We con-

sider the system

(3.12) ∂tv = iδ∆v − 2iγgL(v) + ǫg̃1(v, φ), φ̇ = Ω, J̇ = −∂H̃
∂φ

.

By Lemma 3.1, sufficiently near the origin, and for ǫ = Ω with Ω > Ω1, (3.12) is equivalent

to the full system. System (3.12) is Hamiltonian, for all real ǫ, with Hamiltonian H̃ǫ =

h0 +h2 +h4 +ǫR. Moreover, since P Poisson commutes with both H̃Ω−1

, and h0 +h2 +h4,

we see that P Poisson commutes with H̃ǫ, for all real ǫ. Therefore H̃ǫ, and P̃ satisfy

conditions AI-AIII of chapter 2.

For ǫ = 0, H̃0 is independent of φ and Hamilton’s equation for H̃ yield the averaged

system (3.4), and φ̇ = Ω, J̇ = 0. By Proposition 3.2, given any n0 ∈ Z, A ∈ C \ {0}, and

assuming that |Ω| > max{Ω1,Ω2}, the ǫ = 0 system has the breather solution

(3.13). a(t) = e−iλtA with λ = 2γ|A|2; φ(t) = Ωt+ φ0; J(t) = 0, ∀t ∈ R.

Let C(A, φ0) be the set of points of X × S1 × R in the orbit defined by (3.13). Also let

Λ0(A) = ∪φ0∈S1C(A, φ0). The set Λ0(A) is an invariant 2−torus of the ǫ = 0 system. By
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Proposition 3.2, there exists A0 > 0 (and a corresponding λ0), and Ω3 > max{Ω1,Ω2} for

which the breather A corresponding to A with any A ∈ (0, A0) and any n0 ∈ Z yields a

set Λ0(AΩ) that satisfies Λ0(A) ⊂ Bρ × S1 × R.

Theorem 3.3 Let n0 ∈ Z, A < A0, λ < λ0, and consider the corresponding invariant

tori Λ0(A) of system (3.12) with ǫ = 0, as above. Then there exist an Ω0 > Ω3, β
′
0 > 0

such for every Ω > Ω0 system (3.12) with ǫ = Ω−1, has a 2−parameter family of invariant

2−tori ΛΩ−1,β , β ∈ (−β′
0, β

′
0)

2. The motion on each Λǫ,β is periodic or quasiperiodic (with

two quasiperiods). Also, there exists β′
∗ > 0 for which Λ0,β′

∗

= Λ0(A).

Theorem 3.3 is proved in two steps. First we consider (3.12) and show that we can

apply Theorem 2.2 for some pair ǫ0, β0 > 0. This is done below, using Lemmas 3.4-3.8.

Next, we show that we can choose ǫ0, β0 > 0 that are independent of Ω. This is the

content of Lemma 3.9 below (whose proof is the next chapter). Theorem 3.3 then follows

by setting Ω0 = ǫ0
−1, and applying Theorem 2.2 to (3.12) with Ω > Ω0, and ǫ = Ω−1. The

corollary also follows from the proof of Lemma 3.9 where we examine the geometry of the

proof Theorem 2.2 in the particular problem.

We start by reducing the continuation problem to a study of the Floquet spectrum of

an appropriate variational equation.

Let M = Bρ× S1 ×R, and Hǫ
1 = H̃ǫ, Hǫ

2(u, φ, J) = P (u) = ||u||2. The corresponding

Hamiltonian vector fields are denoted by Xǫ
1, X

ǫ
2 respectively. Also, let Λ = Λ0(A). We

check that we have the set-up for Theorem 2.2, and in particular that Hǫ
1, H

ǫ
2 satisfy

the conditions AI-AIII. The regularity properties follow from the regularity of the cubic

nonlinearity and the observations above on the family Lt. To continue the torus Λ we

examine the Floquet map of an appropriate linear combination of X0
1 , X0

2 . We parametrize

Λ as

(3.14) Λ = {[eiθA, φ, 0] ∈ X × S1 × R : θ ∈ R, φ ∈ S1}.

Let gtF be the time−t map of the flow of the Hamiltonian vector field of F , where F : M →
R. On Λ we then have

(3.15) gtH0

1

([eiθA, φ, 0]) = [ei(θ−λt)A, (φ+ Ωt)mod2π, 0],

(3.16) gtH0

2

([eiθA, φ, 0]) = [ei(θ−t)A, φ, 0].
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Also, gtcF = gctF , ∀c ∈ R, therefore the time−t map of the Hamiltonian vector field of

c1H0 +c2P is gc1tH0
gc2tP . Using (3.15), (3.16), the condition for the orbits of the Hamiltonian

vector field of c1H0 + c2P to be 1−periodic on Λ and to belong to the homotopy class

[n1, n2] ∈ Z2 is that

(3.17) −c1λ− c2 = 2πn1, c1Ω = 2πn2,

or

(3.18) c1 = n2

2π

Ω
, c2 = −2πn1 − n2

2πλ

Ω
.

To calculate the Floquet map around the 1−periodic orbit, we let

(3.19) un = e−i(c1λ+c2)teiθA + w, φ = c1Ωt+ φ0 + ψ, J = I,

and linearize around the periodic solution. The variational equation can be made au-

tonomous by the change of variables v = ei(c1λ+c2)tw and we obtain

(3.20) ∂vn = c1L(v), ψ̇ = 0, İ = 0, where

(3.21) L(v) = iλv + iδ∆v − 2iγ(G(v)),

(3.22) (G(v))n =
1

2π

∫ 2π

0

∑

m∈Z

[L†
ψ]nm

(

(LψA)2m(Lψv)
∗
m + 2|(LψA)m|2(Lψv)m

)

dψ,

n ∈ Z, and [M ]nm is the (n,m) matrix element of the operator M in the standard basis

of X . By (3.19), at t = 1 we have w(t) = v(t). Therefore the Floquet map around the

1−periodic orbit coincides with the time−1 map of the system generated by (3.20)-(3.22).

The formal calculations leading to (3.20)-(3.22) above are justified using the properties

of Lt and the cubic nonlinearity. In particular, the Fréchet derivative of the Hamiltonian

vector field of c1H
0
1 + c2H

0
2 at each point of the periodic orbit exists and is a bounded

operator in X , moreover the variational equation leading to (3.20)-(3.21) has a unique

solution for all real t. In the autonomous problem (3.20)-(3.21), G, L are bounded linear

operators in X . Therefore L generates a norm continuous semigroup.

The operators G, L depend on Ω, through Lt, and also through the breather amplitude

A of Proposition 3.2. To make this dependence explicit we write GΩ, LΩ, AΩ. Also, define

the operator L∞ by

(3.23) (L∞(v))n = iλvn, if n ∈ Z \ {n0}; (L∞(v))n0
= −iλ(vn0

+ v∗n0
).

14



The spectrum of the time−1 map of ∂tv = c1L∞, ψ̇ = 0, İ = 0 is calculated readily

since the system is block diagonal with 2× 2 blocks: the equations for ψ̇, İ yield two unit

eigenvalues. and we also obtain a double unit eigenvalue from the n0 block of the first

equation. Also each integer n 6= n0 yields a pair of eigenvalues e±2πin2
λ
Ω .

Lemma 3.4 The map Ω 7→ LΩ from [Ω2,∞) to B(X) is norm continuous in [Ω2,∞).

Moreover, as Ω → ∞, LΩ converges to L∞ in the norm.

We remark that by (3.18) c1 = 2π n2

Ω , i.e. it depends on Ω. As Ω → ∞, LΩ → L∞

in the norm and we expect that the Floquet spectrum of ∂tv = c1LΩ(v) should (in some

sense) approach the Floquet spectrum of ∂tv = c1L∞(v), computed above. If n2 is kept

fixed, we have that c1 → 0 and we expect that the Floquet spectrum of ∂tv = c1LΩ(v)

collapses to unity as Ω → ∞. Note however that the perturbation is also proportional

to c1, i.e. by Proposition 3.2 it is of O(Ω−2). Roughly, we therefore have an O(Ω−1)

“unperturbed part” (i.e. distance from the resonance) with an O(Ω−2) perturbation. The

continuation may be therefore possible. To see this we will instead vary n2 with Ω and

keep c1 of O(1), i.e. we will consider an equivalent continuation problem with an O(1)

unperturbed part and an O(Ω−1) perturbation.

To define n2 as a function of Ω, consider Ω3 > Ω2 that also satisfies

(3.24)
|λ|
Ω3

≤ 1

8
, Ω3 > 1.

Also let Ω4 = Ω3 + 1
2
. By (3.24) it is easy to check that there exists a positive integer N3

satisfying

(3.25) 2πN3

|λ|
Ω3

∈
(π

3
,
π

2

]

.

Let also N4 = N3. Let Cj , j = 3, 4 be the set of all Ω ≥ Ωj that can be written as

(3.26) Ω = Ωj + kj + xj , kj ∈ {0, 1, 2, . . .}, xj ∈
[

0,
3

4

]

.

Clearly, any Ω ≥ Ω3 belongs to either C3 or C4 (or both). Moreover, given any Ω ∈ Cj ,
j = 3, 4, the corresponding kj , xj are determined uniquely. Finally, each Cj , j = 3, 4 is a

disjoint union of intervals Ijk = [Ωj + kj ,Ωj + kj + 2
3
], kj ∈ {0, 1, 2, . . .}. Using the above,

let Ω ∈ Cj , j = 3, 4, and define c1 by

(3.27) c1 = c1(Ω) = n2(Ω)
2π

Ω
, with n2(Ω) = Nj(Ω) + kj(Ω).
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For Ω ∈ C3 ∩ C4 the scalar c1(Ω) can have two values. To avoid extra notation we first

consider the case Ω ∈ C3 and use the value n2(Ω) = N3(Ω) + k3(Ω). We then proceed to

prove Theorem 3.3 for Ω ∈ C3. We can then repeat the same arguments for Ω ∈ C4, this

time choosing n2(Ω) = N4(Ω) + k4(Ω). The following is elementary.

Lemma 3.5 Let Ω ∈ C3 with c1(Ω) as above. Then

(3.28) |c1(Ω)λ| ∈
[π

6
,
π

2

]

.

With Ω ∈ C3, and c1(Ω) as above, denote the time−1 map of ∂tv = c1(Ω)LΩ(v) by

MΩ. Also, let MΩ be the time−1 map of ∂tv = c1(Ω)L∞(v).

Lemma 3.6 Let Ω ∈ C3 with c1(Ω), MΩ, MΩ as above. The maps Ω 7→ MΩ, and

Ω 7→ MΩ, both from C3 to B(X), are norm continuous in C3. Moreover, for every ǫ > 0

there exists M > 0 for which Ω > M implies ||MΩ −MΩ||0 < ǫ.

By the proof of Proposition 2.1, the spectrum of MΩ consists of a double unit eigen-

value, and the two infinite multiplicity eigenvalues e±ic1(Ω)λ. We want to show that σ(M)

is in some sense similar. Let Γ be a circle of radius r0 around unity in the complex plane,

with r0 ∈ (0, sin π
6 ). The radius r0 will be kept fixed as we vary Ω ∈ C3. Given any

N ∈ B(X) we will say that Γ separates σ(N ) if N has two simple eigenvalues λ1, λ2

inside Γ and σ(N ) \ {λ1, λ2} lies outside Γ. (λ1, λ2 are allowed to coincide, in which case

we are assuming a spectral projection of rank two.) Clearly, if Ω ∈ C3 as in Lemma 3.5,

then the circle Γ separates σ(MΩ).

Lemma 3.7 Suppose that N ∈ B(X), and that Γ separates σ(N ). Then there exists

ǫS = ǫS(N ,Γ) > 0 such that N ∈ B(X) and ||N −N||0 < ǫS imply that Γ separates σ(N ).

The lemma is a special case of a standard result on stability properties of spectral

projections, (see [K], ch. 4, par. 3). In our case Γ is fixed and ǫS(MΩ,Γ) depends only on

MΩ and therefore on Ω. We see that we can choose ǫS that is independent of Ω:

Lemma 3.8 Suppose that Γ separates σ(MΩ) for all Ω ∈ C3. Then there exists ǫS > 0

such that if N ∈ B(X) and ||N −MΩ||0 < ǫS for some Ω ∈ C3, then Γ separates σ(N )

Proof: From the definition of c2, MΩ + k = MΩ, ∀k ∈ {0, 1, 2, . . .}. It is therefore

sufficient to show the lemma for MΩ with Ω ∈ I3
k for some non-negative integer k. Let

I = I3
k . Consider ω0 ∈ I, and an ǫS(ω0) > 0 such that for any N ∈ B(X) with ||N −N ||0 <

16



ǫS(ω0) we have that Γ separates σ(N ). By Lemma 3.7 such ǫS(ω0) exists. Let

(3.29) ǫω0
(Ω) = ǫS(ω0) − ||MΩ −Mω0

||0.

There exists a neighborhood Eω0
⊂ I of ω0 where, by Lemma 3.6, ǫω0

is bounded away

from zero. Moreover, suppose that a bounded operator N satisfies ||N −MΩ||0 < ǫ̃ω0
(Ω)

for some Ω ∈ Eω0
. Then, using (3.29),

(3.30) ||N −Mω0
||0 ≤ ||N −MΩ||0 + ||MΩ −Mω0

||0 < ǫS(ω0)

and therefore Γ separates σ(N ). Thus for Ω ∈ Eω0
we can choose the function ǫS(MΩ,Γ) of

Lemma 3.6 to be bounded away from zero in I (Γ is fixed). We can repeat the construction

around any other point of I. By the compactness of I we have a finite set of intervals E1,

. . ., Em, I ⊂ E1 ∪ . . . Em, and functions ǫj : Ej → R+ that are bounded away from zero in

Ej and satisfy the property that if N ∈ B(X) is at most ǫj(Ω) away from MΩ in the norm

for some Ω ∈ Ej, then Γ separates σ(N ). Choosing lower bounds ǫjS > 0 of the functions

ǫj on each Ej , j = 1, . . ., m, we have the lemma with ǫS = minj∈1,...,m ǫ
j
S .

By the second part of Lemma 3.5, setting ǫ = ǫS , there exists M3 > Ω3 such that

Ω > M3 implies ||MΩ − MΩ||0 < ǫS . By Lemma 3.8, for any Ω ∈ C3 with Ω > M3, Γ

separates σ(MΩ).

Lemmas 3.5, 3.6, and 3.8 are also valid for Ω ∈ C4 with the choice c1(Ω) = k4(Ω) +

x4(Ω). (ǫS may be different.) We therefore see that there exists an M4 > Ω4 with the

property that for any Ω ∈ C4 with Ω > M4, Γ separates σ(MΩ). Consequently, Γ separates

σ(MΩ), for any Ω > Ω5 = max{M3,M4}. By the Hamiltonian structure of the flow that

defines MΩ, the part of σ(MΩ) inside Γ consists of a double unit eigenvalue.

Lemma 3.9 Consider the invariant torus Λ(A) of system (3.12). Assume that Ω > Ω0

for some Ω0 ≥ Ω5. Then there exist β0, ǫ0 > 0 such that for any ǫ with |ǫ| < ǫ0 system

(3.12) has a two parameter family of invariant tori Λǫ,β with β ∈ (−β0, β0)
2, and Λ0,0 =

Λ(A). Moreover, the constants β0, ǫ0 can be chosen to be independent of Ω.

The first part of Lemma 3.9, on the existence of invariant the 2−parameter families of

invariant 2−tori follows from our discussion of the Floquet spectrum around the breathers,

and Theorem 2.2, by choosing n2 as in (3.27). It remains to show that that β0, and ǫ0 can

be chosen to be independent of Ω. This is shown in the next chapter.
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Remark 3.9.1 Theorem 3.3 applies to any β > 0, and a natural question is how Ω0

depends on β. We conjecture that we can choose Ω0 linear in β so that the continuation

is valid in a region that is to the right of some ω0 and below some β
Ω

= α for some α > 0

(see Figure 1).

To see that this is plausible, first consider (3.20), (3.21): c1 depends on n2, and Ω,

with n2 chosen so that c1 belongs to an interval that is independent of Ω for Ω sufficiently

large. On the other hand, the operator L of (3.21) depends on λ and β
Ω

(by Remark 3.0.1).

Since λ is fixed the distance of σ(ec1L) \ {1} from unity only depends on β
Ω . Thus Ω5 is

a linear function of β. Also, in the proof of Lemma 3.9 we observe that for Ω sufficiently

large, and β
Ω sufficiently small, all estimates depend on quantities that are independent of

Ω, β
Ω

(this is shown in chapters 4, 5). In particular, the distance from the resonance, the

geometry of the unperturbed torus, and the size of the neighborhood of the unperturbed

torus where we define the modified Poincare map in the proof of Theorem 2.2 depend

only on β
Ω . For Ω sufficiently large and β

Ω sufficiently small the other quantities affecting

the size of ǫ0, and β0, i.e. norms giving information how much the unperturbed system

changes in a neighborhood of the unperturbed torus and on the size of the perturbation,

are independent of Ω, and β.

We conclude this chapter with some numerical calculations of the Floquet spectra of

breathers of the averaged equation (3.4). The argument used to prove Proposition 3.2 (in

[P3]) can be also used to show the existence of multipeak breathers. For U ⊂ Z, |U | = k,

the k−peak breathers of the vanishing diffraction averaged system

(3.31) ∂ta = −2iγgL(a),

with gL as in (3.4), are continuations of solutions of the system ∂ta = −2iγg(a), g as in

(2.1), that have the form an(t) = e−iλtAn, where An = ±A, if n ∈ U , even; An = ±iA, if

n ∈ U , odd, with λ, A ∈ R, λ = 2γA2. The continuation is valid for β
Ω

sufficiently small

(see [P3]). Recall that at β = 0, gL becomes g.

In the numerical experiments we fix λ and find breather solutions a = Ae−iλt of (3.31)

using minpack routines. We use values of β
Ω

between 10−3 and 1.5. Also, γ = 1, λ = 10,

Ω = 13. As before, given any homotopy class α, we have a c = [c1, c2] ∈ R2 for which the

breathers of (3.4) correspond to 1−periodic solutions of

(3.32) ut = c1[iD∆u− 2γig(u)] + c2[−iu], φ̇ = c1Ω, J̇ = 0.

The modified Floquet map is obtained by integrating numerically the variational equation

around these 1−periodic solutions. The criterion for continuation is that the spectrum of
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the numerically computed nontrivial block of the modified Floquet map have exactly two

unit eigenvalues.

We first consider single-peak breathers. Figures 2(a), 3(a), 4(a) show the behavior

of the spectra of the nontrivial Floquet blocks as we increase the parameter β
Ω . The

corresponding breathers are in Figures 2(b), 3(b), 4(b). The homotopy class is [n1, n2] =

[−1, 1] with the corresponding c = [c1, c2] of (2.12). For β = 0, we see a double unit

eigenvalue and the multiple eigenvalues e±2πi λ
Ω , as expected. As we increase β

Ω
away from

the origin we see a double unit eigenvalue, moreover the rest of the spectrum remains on

the unit circle and accumulates at the points e±2πi λ
Ω , i.e. as expected, it stays off 1 for

small β
Ω .

In the k−peak case with β = 0, the nontrivial Floquet block has 2k unit eigenvalues,

and the multiple eigenvalues e±2πi λ
Ω . As we increase β

Ω away from the origin we see 2k− 2

eigenvalues that move off 1 along the unit circle. The rest of the spectrum remains on

the unit circle and accumulates at the points e±2πi λ
Ω , away from 1. This is indicated in

the spectra of Figures 5(a), 6(a) that correspond to the 2−peak, and 3−peak breathers of

Figures 5(b), 6(b) respectively. For peaks that are further apart, the phenomenon is less

pronounced and the 2k − 2 extra eigenvalues remain close to unity.

Increasing n2 with Ω can control the apparent accumulation points of the spectrum

but not the 2k − 2 eigenvalues that move off 1 for nonzero β
Ω

. Since the distance of these

2k − 2 eigenvalues from 1 vanishes as Ω → ∞, it does not seem likely that the k−peak

breathers of the averaged equation can be continued by the argument of Theorem 3.3.

The strategy may still work by continuing from solutions of higher averaged equations and

using asymptotics of the eigenvalues. Another possible approach is suggested by Remark

4.5.2.

4. The equivariant continuation theorem

To prove Theorem 2.2 we follow the notation used in setting up the theorem in section

2. Let r be a fixed integer, with r ≥ 2. Also let gti,ǫ denote the time−t map of the

vector field Xǫ
i . Assumption AI implies that the maps gti,ǫ are Cr, ∀t ∈ R. Letting

c = [c1, . . . , cs] ∈ Rs, t ∈ R, we also use the notation gctǫ = gc1t1,ǫ . . . g
cst
s,ǫ . By assumption

AIII the maps gti,ǫ, g
t′

j,ǫ mutually commute, for all i, j ∈ {1, . . ., s}, and t, t′ ∈ R. Also,

B(Z, Y ) denotes the bounded linear operators from a Banach space Z to Banach space Y .
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The operator norm in B(Z, Y ) is denoted by ||.||0 (the spaces Z, Y will be clear from the

context in each case). The ball of radius r around the point x is denoted by Br(x), and

Br if x is the origin (the spaces and norms will be clear from the context).

The plan is to use the maps gctǫ to construct a version of the Poincare map from a

neighborhood of (each) m ∈ Λ in Σm to Σm, where Σm is a set of codimension s in M

that is transverse to the unperturbed torus. This map will be further restricted to the

intersection of the level hypersurfaces of the functions H0
j , j = 1, . . ., s. The Poincare

map will be then defined on a set of codimension 2s in M . The directions we remove

correspond to the eigenvectors of the unit eigenvalues of the Floquet map Dgc0 so that

by the nonresonance condition the linearization of the restricted Poincare map will be

invertible and we can continue the fixed point of the unperturbed restricted map uniquely.

The invariant s−torus will be the set of fixed points obtained for each m ∈ Λ and we

obtain an s−parameter family by varying the level hypersurfaces of the H0
j .

The construction of the Poincare map from a subset of Σm to Σm relies on the def-

inition of a suitable coordinate system in a neighborhood of m. This coordinate system

allows us to identify the image of a neighborhood of m in Σm under gcǫ with points on

Σm. This is done in Lemmas 4.1-4.4. The Poincare map is defined after Lemma 4.3. The

existence of fixed points of the Poincare map is shown in Lemma 4.5. Lemma 4.6 states

that the fixed points of the restricted Poincare are the invariant tori we seek. (The proof

makes a repeated application of the implicit function theorem, stated as Lemma 4.7.)

In the continuation problems we are studying the construction of the Poincare map

is simpler, and the map can be defined directly without reference to the general construc-

tion described in Lemmas 4.1-4.4. Similarly, the construction of the invariant tori from

the fixed points of the restricted Poincare map can be done directly, without Lemma 4.6.

Consequently we state these lemmas without proof (see [P4] for proofs). The direct con-

struction of the restricted Poincare map and the invariant tori is detailed in the proof of

Lemma 3.9.

We first define a system of coordinates around the set Λ. Note that for any m ∈ Λ

there exists a Cr Hilbert submanifold Σm of M that has codimension s and is transverse

to Λ at m. Moreover, by assumption AII on the existence of a Cr tubular neighborhood

around Λ, we can choose a family {Σm}m∈Λ of such submanifolds that constitutes a Cr

foliation of a neighborhood U of Λ (see [L]).
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Lettingm ∈ Λ we can assume that a neighborhood of Σm inM has been identified with

a neighborhood of the origin of TmΣm ≃ E by a Cr chart (that we do not make explicit).

Also, let h0
m = H0|Σm

. Then, in a neighborhood of m in Σm we can use coordinates

(y0, z0), where y0 ∈ Y 0, the nullspace of Dh0
m, and z0 ∈ Z0, the orthogonal complement

of Y 0 in TmΣm. Note that Y 0 splits in TmΣm, and that m has coordinates (0, 0). Also, in

a neighborhood of m ∈ Λ we can use Cr coordinates (y0, z0, w) ∈ Y 0 ×Z0 ×W , W ≃ Rs,

where W is the orthogonal complement of Σm in TmΣm. Points with coordinates (y0, z0, 0)

belong to Σm. The dependence of the coordinates of a given point onm is not made explicit

in this notation.

Consider Hǫ = H0 + ǫH̃ , where H0, H̃, Hǫ are s−component vectors with j−th com-

ponents H0
j , H̃j , H

ǫ
j respectively. Let h̃m = H̃|Σm

. By AI, the derivatives D2h
0
m(y0, z0),

D2h̃m(y0, z0) are elements of B(Z0,Rs), i.e. s × s matrices, for any (y0, z0) ∈ Σm. By

the independence of the components of H0, and the definition of Σm, D2h
0
m(y0, z0) is

invertible, ∀(y0, z0) ∈ Σm.

Lemma 4.1 There exist an ǫ1 > 0 and and nonempty Σ1
m ⊂ Σm such that for

|ǫ| < ǫ1, and (y0, z0) ∈ Σ1
m, the map (y0, z0) 7→ (y0, βǫ) defined by βǫ = hǫm(y0, z0) is a Cr

diffeomorphism in Σ1
m, i.e. defines a new Cr coordinate system in Σ1

m.

Let gτǫ (y
0, z0) = gτǫ (y

0, z0, 0), |ǫ| < ǫ1, (y0, z0) ∈ Σ1
m. Let [gτǫ (y

0, z0)]W denote the

W−component of gτǫ (y
0, z0, 0). Also, consider a point (y0, z0, w) in a neighborhood of

Σ1
m × {0} in M , and the equation

(4.1) [gτǫ (y
0, z0)]W = w

for τ ∈ Rs, i.e. (y0, z0, w) is a parameter. We want to find a neighborhood of Σ1
m×{0} in

M where (4.1) has a unique solution τ = τ ǫ(y0, z0). In such a neighborhood we can use

the coordinates (y0, βǫ, τ ǫ).

Consider now the function G(w, τ) = [gτǫ (y
0, z0)]W − w, i.e. compare with (4.1), in a

subset of the origin in Rs × Rs. Note that G(0, 0) = 0.

Lemma 4.2 There exist ǫ2 > 0, r2 > 0, and nonempty Σ2
m ⊂ Σ1

m such that for |ǫ| < ǫ2,

(y0, z0) ∈ Σ2
m, ||w|| < r2 equation (4.1) has a unique solution τ ǫ(y0, z0, w). Moreover, the

function χǫm : Σ2
m × Br2 → Y 0 × Rs × Rs defined by χǫm(y0, z0, w) = (y0, βǫ, τ ǫ) with

βǫ = hǫm(y0, z0), τ ǫ the solution of (4.1), is injective and continuous in Σ2
m × Br2 . Also,

there exists r̃2 > 0, r̃2 ≤ r2 for which χǫm, restricted to Σ2
m × Br̃2 is a Cr diffeomorphism.
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Let m ∈ Λ, |ǫ| < ǫ2, and (y0, z0) ∈ Σ2
m. Define the map φǫm : Σ2

m → Y 0 × Rs

by φǫm(y0, z0) = (y0, βǫ). Also define the map f ǫm : (φ0
m)−1(Σ2

m) → φǫm(Σ2
m) by f ǫm =

(φ0
m)−1 ◦ φǫm. By the lemma f ǫm is a Cr diffeomorphism between the coordinates (y0, β0),

and (y0, βǫ). Let I2 be the set of w ∈ Rs satisfying ||w|| < r2
2µ2

. We have the following.

Lemma 4.3 Let m ∈ Λ. There exists ǫ3 > 0 (and ǫ3 ≤ ǫ2) such that if |ǫ| < ǫ3
then there exists Um ⊂ Σ2

m × I2 with the property that any solution of cXǫ with initial

condition v(0) ∈ Um satisfies v(1) ∈ Σ2
m × I2.

The lemma follows from the continuity of the flows gcǫ and Xǫ = X0 + ǫX̃ .

Let Φǫ = gcǫ . Note that the dependence of Φǫ on the homotopy class α and c is not

made explicit in this notation.

By Lemma 4.2, for any (y0, β0, w) ∈ Σ2
m×I2 we can use coordinates yǫ, βǫ, τ ǫ defined

by τ ǫ(y0, β0, w) as in Lemma 4.2, βǫ(y0, β0, w) = hǫm(y0, β0), and yǫ(y0, β0, w) = y0.

Consider the image Φǫ(y
0, β0, w) of points of Um under Φǫ. Using coordinates yǫ, βǫ, τ ǫ

we define ŷǫ, β̂ǫ, τ̂ ǫ by

(4.2) ŷǫ = yǫ(Φǫ(y
ǫ, βǫ, τ ǫ)), β̂ǫ = βǫ(Φǫ(y

ǫ, βǫ, τ ǫ)), τ̂ ǫ = τ ǫ(Φǫ(y
ǫ, βǫ, τ ǫ)).

By Lemma 4.3, ŷǫ, β̂ǫ, τ̂ ǫ are well defined in Um.

Lemma 4.4 Fix m ∈ Λ and let (β̂ǫ, τ̂ ǫ, ŷǫ) be as above. Then for any (βǫ, τ ǫ, yǫ)m ∈
Um we have (i) β̂ǫ = βǫ, (ii) τ̂ ǫ = τ ǫ+τ ǫ0 , where τ ǫ0 depends on βǫ, yǫ, (iii) ŷǫ is independent

of τ ǫ.

By Lemma 4.2 the component ŷǫ of Φǫ depends on βǫ and yǫ and we write ŷǫ =

ŷǫ(βǫ, yǫ). We now use the condition on the spectrum of the derivative of Φ0.

Let m ∈ Λ, |ǫ| < ǫ3. Let Σ3
m, I3 be non-empty subsets of Σ2

m, I2 respectively, with

the property that Σ3
m × I3 ⊂ Um. Let Vm = χ0

m(Σ3
m × {0}). For (y0, β0) ∈ Vm, define the

functions β, and ŷ by

(4.3) β(ǫ, y0, β0) = βǫ(y0, β0),

(4.4) ŷ(ǫ, y0, β0) = ŷǫ(y0, β(ǫ, y0, β0)) = ŷǫ(βǫ(y0, β0)).

Also, let

F (ǫ, y0, β0) = ŷǫ(y0, βǫ) − y0 = ŷ(ǫ, y0, β(ǫ, y0, β0)) − y0
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We may assume without loss of generality that β0(m) = 0, ∀m ∈ Λ, i.e. by adding

appropriate constants to the H0
j , j = 1, . . . , s. Viewing F as a function of the two variables

x = (ǫ, β0), y = y0, we then have F (0, 0) = 0. The function F is Cr in its domain by the

Cr regularity of the flows Φǫ. Also, by Lemma 4.1 and the construction of the coordinates

(y0, β0), F is Cr in m ∈ Λ.

Let

(4.5) ||(x,y)||1 = (|ǫ|2 + ||(y0, β0)||2) 1

2 .

Assume that there exist positive reals µ3, Λ1, Λ2 satisfying respectively

(4.6) µ3 = ||[D2F (0, 0)]−1||0.

(4.7) ||D2F (x,y) −D2F (0, 0)||0 < Λ1||(x,y)||1, ∀(x,y) ∈ I3 × Vm,

(4.8) ||F (x, 0)|| < Λ2||(x, 0)||1, ∀(x, 0) ∈ I3 × Vm

Lemma 4.5 Let m ∈ Λ, χǫm, Φǫ as above, and |ǫ| < ǫ3. There exists ǫ0 > 0, ǫ0 ≤ ǫ3,

that depends on Λ1, Λ2, µ3, such that for every ǫ ∈ (−ǫ0, ǫ0) there exists a βǫ∗ > 0 for

which |ǫ| < ǫ0, β
ǫ ∈ Bβǫ

∗

imply that the equation ŷǫ(y0, βǫ) = y0 has a unique solution

y0 = ρǫm(βǫ). The map ρǫm : Bβǫ
∗

→ Y 0 is Cr in a nontrivial subset of its domain. Also,

the maps ρǫm depend on m in a Cr way, ∀ǫ ∈ (−ǫ0, ǫ0), βǫ ∈ Bβǫ
∗

.

Remark 4.5.1 In the case where one of the µ3, Λ1, Λ2 is not well defined, the

conclusions of Lemma 4.5 are still valid for some ǫ0 > 0. The more detailed version and

additional assumptions here allows us to understand the dependence of ǫ0 on some of the

parameters of the problem, especially Ω; this is used the proof of Lemma 3.9 below.

Proof of Lemma 4.5: We want to solve F (x,y) = 0, i.e. find y(x) for x near the

origin. We have F (0, 0) = 0. Also,

(4.9) D2F =
∂ŷǫ

∂β

∂β

∂y0
+

∂ŷ

∂y0
− I,

From β(0, y0, β0) = β0 and the continuity of ∂β
∂y0 at the origin we have that

(4.10)
∂β

∂y0
(0, 0, 0) = 0.
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Also, at the origin,

(4.11)
∂ŷ

∂y0
=
∂ŷ0

∂y0
(0, 0).

Therefore

(4.12) D2F (0, 0) =
∂ŷ0

∂y0
(0, 0) − I.

Using the coordinates (yǫ, βǫ, τ ǫ) for ǫ = 0, the derivative of Φ0 is

(4.13) DΦ0 =





∂y0 ŷ ∂β0 ŷ ∂τ0 ŷ

∂y0 β̂0 ∂β0 β̂0 ∂τ0 β̂0

∂y0 τ̂0 ∂β0 τ̂0 ∂τ0 τ̂0



 .

By Lemma 4.4, at β0 = 0, y0 = 0, τ0 = 0 we have

(4.14) DΦ0(0, 0, 0) =





∂y0 ŷ(0, 0) ∂β0 ŷ(0, 0) 0

0 Is 0

∂y0 τ̂0(0, 0) ∂β0 τ̂0(0, 0) Is



 ,

where Is is the s × s identity matrix. The block 1, 1 is the operator ∂ŷ
∂y0 (0, 0) of (4.13).

By the block triangular structure of DΦ0(0, 0), i.e. swap the first and second compo-

nents, the spectrum of DΦ0(0, 0) is the union of the spectra of ∂ŷ
∂y0 (0, 0) and Is. There-

fore σ(DΦ0(0, 0)) contains at least 2s unit eigenvalues, moreover by the assumption on

σ(DΦ0(0, 0)), the spectrum of ∂ŷ0

∂y0 (0, 0) belongs to the complement of a disk around 1.

The operator ∂F
∂y0 (0, 0) of (4.13) has thus a bounded inverse in Y and there exists some

µ3 > 0 that satisfies (4.6). To apply the implicit function theorem, consider some r > 0

with the properties that (x,y) ∈ Br × Br implies that (x,y) ∈ I3 × Vm, and

(4.15) r < (2
√

2Λ1µ3)
−1.

Let

(4.16) r2 = r; r1 = (2Λ1µ3)
−1 if 2Λ1µ3 ≥ 1, r1 = r otherwise.

We check that the conditions for the implicit function theorem are satisfied for (x,y) ∈
Br1 × Br1 . Therefore for (ǫ, β0) ∈ Br1 we have a unique map (ǫ, β0) 7→ ρm(ǫ, β0) ∈ Y 0,

with F (ǫ, β0, ρm(ǫ, β0))) = 0. The map is Cr in a nonempty subset of Br1 . Note that there

exist ǫ > 0, β0
∗ such that (−ǫ0, ǫ0)× (−β0

∗ , β
0
∗)
s ⊂ Br1 , moreover, given any ǫ with |ǫ| < ǫ0,
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there exists a βǫ∗ > 0 such that the set V ǫm = (−βǫ∗, βǫ∗) × {0} ⊂ φǫm(Σ3
m) ⊂ Z0 × Y 0 is

mapped to V 0
m by (f ǫm)−1. We then define ρǫm : V ǫm → Y 0 by

(4.17) ρǫm(βǫ) = ρm(ǫ, (f ǫm)−1(βǫ, 0)),

i.e. ρǫm(βǫ) = ρ(ǫ, β0) with β0 = (f ǫm)−1(βǫ, 0). By the definition of the map ρm, and

letting β0 = (f ǫm)−1(βǫ, 0), we have

(4.18) ŷǫ(βǫ, ρǫm(βǫ)) − ρǫm(βǫ) = ŷ(ǫ, β(ǫ, β0, ρm(ǫ, β0)), ρm(ǫ, β0)) − ρm(ǫ, β0) =

= F (ǫ, β0, ρm(ǫ, β0)) = 0,

as required. Also, for |ǫ| < ǫ0, the maps ρǫm are Cr in βǫ, for all βǫ in some nontrivial

subset of V ǫm. The Cr smoothness of the ρǫm in m follows from the Cr regularity of ρm on

m, and the Cr regularity of the map from the variables y0, βǫ) to the variables y0, β0.

Remark 4.5.2 In the case where the multiplicity of the unit eigenvalue of DΦǫ is

greater than 2s and finite one may be able to analyze the continuation question using

Lyapunov-Schmidt reduction. This approach may be useful in the multipeak case.

Now, let m ∈ Λ and define the map σǫβǫ : Λ → ∪m∈ΛU
ǫ
m by

(4.19) χǫm(σǫβǫ(m)) = (βǫ, 0, ρβ
ǫ

m ).

Also, let

(4.20) Λǫ,βǫ = ∪m∈Λ(βǫ, 0, ρǫm(βǫ))m = σǫβǫ(Λ).

Lemma 4.6 The set Λǫ,βǫ is Cr diffeomorfic to Λ and is invariant under gτǫ , ∀τ ∈ Rs

(and therefore invariant under the flow of the Xǫ
j , j = 1, . . ., s). Moreover the motion on

Λǫ,βǫ is conditionally periodic.

The following is the version of the implicit function theorem used in Lemma 4.5 (see

e.g. [Z]).

Lemma 4.7 Let X, Y be Banach spaces, (x0,y0) a point in X×Y, and U a neighbor-

hood of (x0,y0) in X × Y. Consider a function F : U → Y, that satisfies F (x0,y0) = 0.
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Assume that F is continuous in U , that D2F exists and is continuous in U , and that

[D2F ](x0,y0) ∈ B(Y) has a bounded inverse. Let M2 > 0 satisfy

(4.21) ||([D2F ](x0,y0))
−1||0 < M2

and consider r1, r2 > 0, Br1(x0) × Br2(y0) ⊂ U , satisfying

(4.22) sup
(x,y)∈Br1

(x0)×Br2
(y0)

||D2F (x,y) −D2F (x0,y0)||0 <
1

2M2

,

(4.23) M2 sup
x∈Br1

(x0)

||F (x,y0)||Y <
1

2
r2.

Then there exists a unique function g : Br1(x0) → Y with g(x0) = y0, and F (x, g(x)) = 0,

∀x ∈ Br1(x0). Also g(Br1(x0)) ⊂ Br2(y0). If in addition, F is Cr in U , r ≥ 1, then g is

Cr for x in some Br̃1(x0), where r̃1 > 0.

We now proceed with the proof of Lemma 3.9. We follow the steps of the Poincare

map construction.

We use the following notation: let h : X → R be Cr in X and define ∇h : X → R by

〈∇h(u), v〉 = Dh(u)v. Let J v = −iv, v ∈ X . J defines a symplectic structure in X . Also

let Vh = J∇h.

Similarly, let E = X × R × R (the covering space of M) with the inner product 〈 ,
〉E defined by 〈(u, φ, J), (u′, φ′, J ′)〉E = 〈u, u′〉 + φφ′ + JJ ′. Let h : E → R be Cr in E

and define the gradient ∇Eh of h as before using the inner product on E. We also use the

notation ∇̃ = ∇E . Also let J̃ be the tensor product of J with the standard symplectic

structure in R2. J̃ is a symplectic structure on E and we let Ṽh = J̃ ∇̃h.

Furthermore denote the orthogonal projections from E to X , R (angle), R (action)

by P1, P2, P3 respectively. Let Ṽ 1
h , Ṽ 2

h , Ṽ 3
h denote the corresponding components of Ṽh.

We first define the hypersurfaces Σm. Let M = Bρ×S1 ×R, with ρ as in Proposition

3.1. Thus ρ is independent of Ω, for Ω > Ω1. Let SA be the set of points that belong

to the periodic orbit e−iλtA, where A ⊂ Bρ. Note that SA depends on Ω. Let Λ =

SA × S1 × {0} ⊂ M be the invariant torus of the ǫ = 0 problem. Let m = (p, φ0, 0) ∈ Λ,

i.e. p ∈ SA and we may assume without loss of generality that p = A. Let PA ⊂ X be the

hyperplane through A that is normal to SA in X . Also let PkA be the set of points a ∈ PA

that satisfy ||a−A|| ≤ k.
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It is easy to check that the set SA belongs to a 2−(real)dimensional subspace EA of X ,

in particular it is a circle of radius ||A|| in EA, centered at the origin. Therefore, choosing

k0 > 0 with k0 ≤ min{ρ− ||A||, ||A||}, the sets Pk0A corresponding to different p ∈ SA are

disjoint. Moreover, by Proposition 3.2, we have that ||A|| → A as Ω → ∞. Since A is

a fixed parameter, i.e. it is independent of Ω, K0 can be chosen independently of Ω for

Ω > Ω1. Let Σm be the set of points (̟(p), φ0, J) with ̟(p) ∈ Pk0A , φ0 ∈ S1, J ∈ R. By

the definition of Σm there exists some ρ̃ > 0 independent of Ω, and m with the property

that the intersection of Σm and Bρ̃(m) is nonempty, for every Ω > Ω1, i.e. for Ω sufficiently

large the size of Σm is independent of m and Ω.

Remark 4.7.1 Since the averaged equation, and the breather A depend only on β
Ω ,

the size of Σm is also independent of β
Ω

for β
Ω

sufficiently small.

Given the defintion of Σm above the Poincare map construction can be outlined as

follows. We observe that the time−1 map of c1X
ǫ
1, ǫ ∈ R, maps X × {φ0} × R ⊂ M ,

φ0 ∈ S1, to itself, i.e. the angle is advanced by n22π. Since the flow of Xǫ
2 does not

change the φ−component, the set X × {φ0} × R is also invariant under the time−1 map

of c1X
ǫ
1 + c2X

ǫ
2, ǫ ∈ R. Since for ǫ = 0, m ∈ Λ is also mapped to itself, we expect that for

ǫ 6= 0, |ǫ| sufficiently small the time−1 map of c1X
ǫ
1 + c2X

ǫ
2 maps a neighborhood of m in

Σm to points near PA ×φ0 ×R. These points can be further identified with points on Σm
via the flow of Xǫ

2; this will define the Poincare map from a subset of Σ1 to Σ1.

To define coordinates β0, y0 on Σm, let Σ̃m = Σm − m ≃ TmΣm. Also let Y 0 =

Σ̃m ∩ ker(∇EP (A)) and let Z0 be the real span of ∇EP (A), and [0, 0, 1]. By ∇H0
1 (A) =

λ∇H0
2 (A) the Y 0, Z0 here coincide with the ones in the proof of Theorem 2.2. Also Z0 is

the orthogonal complement of Y 0 in Σ̃m. Let x = (u, φ, J) ∈ Σm. Then we let y0(u, φ, J)

be the orthogonal projection of x−m to Y 0. Also let β0
j (u, φ, J) = H0

j (x)−H0
j (m), j = 1,

2.

To define the domain of the restricted Poincare map, let

(4.24) K = {(u, φ, J) : u = eiθx, x ∈ P1Σm, |θ| <
π

16
, φ = φ(m), J ∈ P3Σm}

Lemma 4.8 Let m ∈ Λ, Σm, K as above. There exist Ω0 > 0, ǫ3 > 0, and a

neighborhood Σ3
m of m in Σm for which Φǫ(Σ

3
m) ⊂ K, for all ǫ ∈ (−ǫ3, ǫ3), Ω > Ω0.

Note that for Ω > Ω0, the set Σ3
m , and ǫ3 do not depend on Ω. Lemma 4.8 follows

from:
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Lemma 4.9 Let m ∈ Λ. There exists an Ω0 > 0 such that for every neighborhood

Ũm of m in M we can choose a neighborhood Um of m in M , Um ⊂ Ũm, and ǫ3 > 0, both

independent of Ω for Ω > Ω0 with the property that Φǫ(Um) ⊂ Ũm, for all ǫ ∈ (−ǫ3, ǫ3),
Ω > Ω0. (Um independent of Ω means that it contains a ball that is independent of Ω.)

Proof: We show that there exist ǫ3 > 0 and a subset Um ⊂ Σ2
m×I2, both independent

of Ω, and β
Ω

, such that for any ǫ, |ǫ| < ǫ3, any trajectory v(t) of c · Xǫ = c1X
ǫ
1 + c2X

ǫ
2

with initial condition v(0) ∈ Um satisfies v(1) ∈ Σ2
m × I2. Let u(t) be trajectory of c ·X0

on Λ, i.e. u(0) = u(1) = m. Let v(t) be a trajectory of c ·Xǫ, v(t) ∈ B(ρ) × S1 × R. Let

P1, P2, P3 denote the projections onto X , S1 (the angle coordinate), and R (the action

coordinate) respectively. Let ζ1(t) = ||P1v(t)−P1u(t)||, ζj(t) = |Pjv(t)−Pju(t)|, j = 2, 3.

Note that by u(1) = u(m), ζ1(1) = ||P1v(t) − P1m||, we have ζj(1) = |Pjv(1) − Pjm|,
j = 2, 3. From the definition of v(t), u(t) we have

(4.25) ζ1(t) ≤ ζ1(0) +

∫ t

0

||P1c ·X0(u(s))− P1c ·X0(v(s))||ds+ |ǫ|
∫ t

0

||P1c · X̃(v(s))||ds.

From the discussion of section 3 (see also Lemma 5.4), |c1|, |c2| are bounded independently

of Ω for Ω sufficiently large. By Lemma 5.3 the Lipschitz constant for P1X
0 in Bρ can be

chosen to be independent of Ω for Ω sufficiently large. Also, by Proposition 3.1, P1X̃ is

bounded by a constant independent of Ω (and β). Thus, for t ∈ R, we have

(4.26) ζ1(t) ≤ ζ1(0) +

∫ t

0

C2ζ1(s)ds+ |ǫ|C3

with C2, C3 constants that are independent of Ω (and β). The functions cHǫ = c1H
ǫ
1 +

c2H
ǫ
2, H

ǫ
2 = P are constant along the trajectories of cXǫ. Comparing the values of Hǫ

1 at

t = 0, 1 we have

(4.27) ζ3(1) = |J(1) − J(0)| =
1

Ω

(

|H0
1 (vǫ(1)) −H0

1 (m)| + |ǫ||H̃1(vǫ(1)) − H̃1(m)|
)

By Proposition 3.1, and Lemma 5.2 we then have

(4.28) ζ3(1) < C5ζ3(0) + C6|ǫ|,

with C5, C6 independent of m, Ω, and β
Ω for Ω sufficiently large. Therefore

(4.29) ζ1(1) ≤ (ζ(0) + |ǫ|C3)(1 + C2e
C2), ζ2(1) = ζ2(0), ζ3(1) ≤ ζ3(0) + |ǫ|C4

with C2, C3, C4 independent of Ω, and β
Ω , therefore, given any δ > 0, there exist d1, d2,

d3, ǫ̃3 > 0 independent of Ω, and β
Ω such that ζj(0) < dj , j = 1, 2, 3, |ǫ| < ǫ̃3 imply that

ζj(1) < δ, j = 1, 2, 3, as required.
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In Σ3
m we further let ψ(β0, y0) = (u, φ, J), i.e. ψ takes us from the β0, y0 to the u, φ,

J coordinates in Σ3
m. Also let ψj , j = 1, 2, 3 denote the respective u, φ, J components of

ψ.

In addition, let p = (u, φ(m), J) ∈ K. Then there exists a unique pair of τ ∈ R, and

p′ = (u′, φ(m), J) ∈ Σ3
m such that the time−τ map of ṼP = −i∇EP takes p′ to p. We

then let ψ(u, φ(m), J) = (β0(u′, φ(m), J), y0(u′, φ(m), J)). Let ψ2 be the y0−component

of ψ.

Remark 4.9.1 Note that τ corresponds to τ2 in (the general setup of) Lemma 4.4.

We then define the restricted Poincare map F by

(4.30) F (ǫ, β0, y0) = ψ2(Φǫ(ψ(β0, y0))).

By Lemma 4.8, and the definition of ψ, ψ, the map F can be defined for all ǫ ∈ (−ǫ3, ǫ3)
and all β0, y0 corresponding to points in Σ3

m. By the definition of β0, y0, and the fact that

Σ3
m contains a ball that is independent of Ω for Ω > Ω0, the range of β0(x), and y0(x),

with x ∈ Σ3
m is independent of Ω for Ω > Ω0. Thus the domain of F is independent of Ω

for Ω > Ω0.

Remark 4.9.2 By the β0, y0, and the fact that Σ3
m contains a ball that is indepen-

dent of β
Ω for Ω > Ω0 and β

Ω sufficiently small we similarly see that the domain of F is

independent of β
Ω

for Ω > Ω0, and β
Ω

sufficiently small.

Letting x = (ǫ, β0), y = y0, and defining the norm || · ||1 as in (4.5), we complete the

proof of Lemma 3.9 by showing that µ3, Λ1, Λ2 of (4.6)-(4.8), and hence ǫ0 in Lemma 4.5

can be chosen independently of Ω for Ω sufficiently large. The estimates below are also

seen to be also independent of β
Ω

for Ω > Ω0 and β
Ω

sufficiently small.

By (4.6), the definition of ∂ŷ
0

∂y0 in the proof of Lemma 4.5, and Lemmas 3.7-3.8 we have

(4.31) µ3 = ||[D2F (0, 0)]−1||0 = ||[∂ŷ
0

∂y0
(0, 0)]−1||0 < r0,

with r0 independent of Ω for Ω > Ω0 ≥ Ω5. By Remark 3.9.1 r0 is independent of β
Ω

for

Ω > Ω0 and β
Ω sufficiently small. We further have:
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Lemma 4.10 Let m ∈ Λ, |ǫ| < ǫ3. Then there exists an Ω0 > 0 such that for Ω > Ω0

the constants Λ1, Λ2 can be chosen independently of Ω, and m ∈ Λ.

Proof: Let m ∈ Λ and ψ, ψ as above. Let Φǫ be the time−1 map of the vector field

c ·Xǫ = c1X
ǫ
1 + c2X

ǫ
2. We first estimate Λ2. Since

(4.32) F (ǫ, β0, 0) = ψ1(Φǫ(ψ(β0, 0))),

to show (4.8) with Λ2 independent of Ω, m it is enough to find K1, K2, . . . , K6 independent

of Ω, m, such that for |ǫ| < ǫ3 we have

(4.33) ||ψ(β0, 0)||E < K5||β0||R2 +K6|ǫ|, ∀(β0, 0) ∈ Σ3
m;

(4.34) ||Φǫ(v −m)||E < K1||v −m||E +K2|ǫ|, ∀v ∈ Um;

(4.35) ||ψ2(v −m)||Y 0 < K3||v −m||E +K4|ǫ|, ∀v ∈ K.

To prove (4.33), write m = Aeiθ, i.e. as in the breather equation, and let z ∈ Σ3
m.

Then β0
j = Hz

j −Hj(m). Also, let ũ = P1(z −m) ∈ X , J̃ = P3(z −m) ∈ R. Then

(4.36) β0
2 = 2Re〈Aeiθ, u〉c + ||ũ||,

with 〈u, v〉c =
∑

n∈Z unv
∗
n the standard Hermitian inner product in l2(Z,C). Since y0 = 0,

z ∈ Σ3
m, the variable u can only have components along ∇EH1(m), ∇EH2(m). Moreover,

by the breather equation with λ ∈ R, ∇H1(m), ∇H2(m) are colinear. Therefore Aeiθ,
and ũ are colinear and (4.36) becomes

(4.37) β0
2 = ±2||A||||ũ|| + ||u||2

with the +, − signs corresponding to β0
2 > 0, β0

2 < 0 respectively. In the + case we have

(4.38) ||ũ|| ≤ |β0
2 |

2||A||+ ||ũ|| ≤
|β0

2 |
2||A|| .

Recall that by the discussion of the tubular neighborhood around Λ we have ||ũ|| < ||A||.
Then, in the − case we have

(4.39) ||ũ|| ≤ |β0
2 |

2||A||||ũ|| ≤
|β0

2 |
||A|| .
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By the discussion on the tubular neighborhood around Λ, ||A|| is bounded away from the

origin as Ω → ∞ and therefore (4.38), (4.39) imply that

(4.40) ||ũ|| < C||β0
2 ||,

with C independent of Ω for Ω sufficiently large. Furthermore,

(4.41) β0
1 = −ΩJ̃ + h4(z) − h4(m),

hence

(4.42) J̃ =
1

Ω

(

−β0
1 − h4(z) + h4(m)

)

.

By Lemma 5.2 we then have that, for Ω sufficiently large, there exist C1, C2 independent

of Ω such that

(4.43) |J̃ | < C1|β0
1 | + C2||ũ||.

In addition, |φ| = |P3(z −m)| = 0. Combining this with (4.40), (4.43), we obtain (4.33).

To show (4.34) observe that v = vǫ(1)−m, i.e. with v as in (4.34), vǫ as in of Lemma

4.9. Then, (4.34) follows from the arguments of Lemma 4.9.

To show (4.35) we write

(4.44) ψ2(v −m) = PY 0(gτ2 (v) −m) = PY 0∩XP1(g
τ
2 (v) −m), τ = τ(v,Σm),

where PY 0 is the orthogonal projection onto Y 0, and gτ2 = gτ2,ǫ. We have

(4.45) ||PY 0∩X ||0 ≤ 1 + ||PZ0∩X ||0 ≤ 1 + ||||A||−1A〈A, ·〉||0 ≤ 1 + ||A|| ≤ 1 + ρ,

with ρ independent of Ω. To estimate P1(g
τ
2 (v) −m) in (4.44), let v1 = P1v, m1 = P1m,

and θ = τ(v,Σm). We have

(4.46)

||P1(g
τ
2 (v)−m)|| = ||eiθv1 −m1|| ≤ ||v1 −m1||+ |

∫ θ

0

P1X
ǫ
2(v1(s))ds| ≤ ||v1 −m1||+ ρ|θ|.

To estimate θ consider Xc, i.e. l2(Z,C) with the complex Hermitian structure 〈·, ·〉c, and

apply Gram-Schmidt to obtain a new basis {bn}n∈Z in which −i∇P (A) = ||A||b1. Let

U be the corresponding unitary operator. The action of pointwise mutiplication by eiθ

in the standard basis of Xc commutes with U , U † and therefore has the same diagonal
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representation in the new basis. Note also that Σ̃m is the direct sum of the Hermitian

complement of −i∇P (A), viewed as a (real) subspace of X , and the (real) span of ∇P (A).

Then θ is the angle between ṽ1, and µ = ∇P (A), where ṽ1 = 〈v1, b1〉c. Since both ∇P (A),

v1 belong to the same real 2−plane, and |θ| < π
16 by v ∈ K, we have

(4.47) |θ| ≤ π

2
sin|θ| ≤ π

2

|µ̃− µ|
|µ| ,

where µ̃ is the point along ṽ1 which makes the segment µ̃, µ normal to ṽ1. Therefore,

(4.47) implies

(4.48) |θ| ≤ π

2

|ṽ1 − µ|
|µ| ≤ π

2

||v1 −m1||
|m1|

≤ π

2ρ
||v −m||E .

(4.35) is obtained by combining (4.44)- (4.46), (4.48).

To estimate Λ1, write

(4.49) D2F (ǫ, β0, y0) =
∂

∂y0
ψ2(Φǫ(ψ(β0, y)))− I =

=
∂ψ2

∂u

∂Φ1
ǫ

∂y0
+
∂ψ2

∂φ

∂Φ2
ǫ

∂y0
+
∂ψ2

∂J

∂Φ3
ǫ

∂y0
− I

where I is the identity in Y 0 and Φ1
ǫ , Φ2

ǫ , Φ3
ǫ are the u, φ, and J components of Φǫ

respectively. We observe that ∂ψ2

∂φ
, ∂ψ2

∂J
vanish identically. Moreover

(4.50)
∂Φ1

ǫ

∂y0
=
∂Φ1

ǫ

∂u

∂ψ1

∂y0
+
∂Φ1

ǫ

∂φ

∂ψ2

∂y0
+
∂Φ1

ǫ

∂J

∂ψ3

∂y0

where
∂ψ

2

∂y0 ,
∂ψ

3

∂y0 also vanish identically. Therefore (4.49) reduces to

(4.51) D2F (ǫ, β0, y) = ABǫC − I

with

(4.52) A = D1ψ2 at Φǫ(ψ(β0, y)), Bǫ = D1Φ
1
ǫ at ψ(β0, y),

C = D2ψ1 at (β0, y).

Then

(4.53) D2F (ǫ, β0, y)−D2F (0, 0, 0) = A(Bǫ −B0)C.
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Note that A ∈ B(X, Y 0), Bǫ ∈ B(X,X), C ∈ B(Y 0, X), D2F ∈ B(Y 0, Y 0).

To show that Λ1 can be chosen independently of Ω for Ω sufficiently large it is then

enough to show that for |ǫ| < ǫ3, (β0, y0) ∈ Σ3
m and Ω sufficiently large we can choose LB,

M1, M3 independent of Ω, and m ∈ Λ for which

(4.54) ||Bǫ −B0||0 < LB||(ǫ, β0, y)||1

(4.55) ||A||0 < M1, ||C||0 < M3,

where || · ||0 denotes the operator norm in the respective spaces.

To bound ||A||0, we have that by (4.52), (4.44)

(4.56) A =
∂

∂u
ψ2(u, φ, J) = PY 0∩X

∂

∂u
P1g

τ
2 (u)), τ = τ(v,Σm),

since PY 0∩X is constant. By (4.45), (4.56) implies

(4.57) ||A||0 < C|| ∂
∂u
P1g

τ
2 (u))||0,

with C independent of Ω for Ω large. Letting θ = τ(u,Σm) we also have

(4.58)) [
∂

∂u
P1g

τ
2 (u))]v = 〈∇θ, v〉ieiθu+ eiθv.

Employing the change of basis we used in showing (4.35), and letting u1 = 〈u, b1〉c, we

observe that θ is the angle between u1, µ = ∇P (A) and therefore depends on u1 alone.

Then, letting u1 = [x, y] ∈ R2, i.e. the complex span of b1, we have

(4.59) ||〈∇θ, v〉|| ≤ (θ2
x + θ2

y)||v||.

From (4.58) we therefore have that

(4.60) || ∂
∂u
P1g

τ
2 (u)||0 ≤ 1 + ρ.

By (4.57), (4.60) we can choose M1 = c(1 + ρ) in (4.55), i.e. is idependent of Ω.

To bound ||C||0 in (4.55), we note that u, the first coordinate of point in Σm, is given

by u = P1(z + y), with z ∈ Z0, y ∈ Y 0. Thus we can choose M3 = 1.
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To show (4.54), let s ∈ [0, 1], uj(s) ∈M a trajectory of cXεj , with |εj | < ǫ3, j = 1, 2.

Then DΦǫj (uj(0)) = Vj(1) where Vj(t) satisfies

(4.61) Vj(t) = Vj(0) +

∫ t

0

D(c ·Xεj (uj(s)))Vj(s)ds, Vj(0) = I,

with I the identity in X . Letting ε2 = ǫ, |ǫ| < ǫ3, and ε1 = 0 we have

(4.62) ||Bǫ −B0||0 = ||V2(1) − V1(1)||0

with

(4.63) ||V2(t) −V1(t)||0 ≤
∫ t

0

||D1P1c ·X0(u2(s))||0||V2(s) − V1(s)||0ds+

+

∫ t

0

||D1P1c ·X0(u2(s)) −D1P1c ·X0(u1(s))||0||V1(s)||0ds+

|ǫ||c2|
∫ t

0

||D1P1X̃(u2(s))||0||V2(s)||0ds,

with || · ||0 the operator norm in B(X,X), t ∈ [0, 1]. Recall that uj(s) ∈ B(ρ) × S1 × R,

∀s ∈ [0, 1], j = 1, 2, and that by the argument of Lemma 4.9 we have

(4.64) ||P1u2(s) − P1u1(s)||X̃ ≤ K4
′′(||u2(0) − u1(0)||X + |ǫ|), ∀s ∈ [0, 1],

with K4
′′ independent of Ω for Ω sufficiently large.

Choosing Ω sufficiently large we have the following. First, byD1P1c·Xε1 = D1P1c·X0,

expression (4.61) for V1(t), Lemma 5.5, and Gronwall we obtain

(4.65) ||V1(t)||0 < K5, ∀t ∈ [0, 1],

with K5 independent of Ω. Also, by D1P1c ·Xε2 = D1P1c · (X0 + ǫX̃), expression (4.61)

for V2(t), Lemmas 5.1, 5.5, and Gronwall we have

(4.66) ||V2(t)||0 < K7, ∀t ∈ [0, 1],

with K7 independent of Ω. By Lemma 5.5 we also have

(4.67) ||D1P1c1X
0
1 (u2(s))||0 < K3, ∀s ∈ [0, 1],

with K3 independent of Ω. Also, by Lemma 5.1, and (4.64) we have

(4.68) ||D1P1c ·X0(u2(s)) −D1P1c ·X0(u1(s))||0 < K4
′K4

′′(||u2(0) − u1(0)||E + |ǫ|),
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∀s ∈ [0, 1]. Furthermore by (4.64) we have

(4.69) ||V1(s)||0 < K5, ∀s ∈ [0, 1],

with K5 independent of Ω.

Combining (4.65)-(4.69), and (4.63) we then have

(4.70) ||V2(t) − V1(t)||0 <
∫ t

0

K3||V2(s) − V1(s)||0ds+

+

∫ t

0

K4
′K4

′′K5(||P1u2(0) − P1u1(0)||X + |ǫ|)ds+ |ǫ|
∫ t

0

K6K7ds.

By (4.70), and Gronwall we therefore have

(4.71) ||Bǫ −B0||0 = ||V2(t) −V1(t)||0 < K8(||u2(0) − u1(0)||E + |ǫ|),

with K8 independent of Ω. By u1(0) = m, and setting u = u2(0) −m, (4.71) then yields

(4.72) ||Bǫ −B0||0 < K8(||u||E + |ǫ|) ≤ K8
′||(ǫ, β0, y)||1

with K8
′ independent of Ω. Setting LB = K8

′ we obtain (4.54).

5. Some auxiliary lemmas

Lemma 5.1 Let u ∈ B(ρ) × S1 × R, || · ||0 the operator norm in B(X,X). Then

||D1P1X̃(u)||0 < K6,

with K6 independent of Ω, and β
Ω for Ω sufficiently large and β

Ω sufficiently small.

Proof: Let z ∈M . We will use the following expression for the remainder:

(5.1)
1

Ω
X̃(z) = RI(z) +RII(z) +RIII (z), with

(5.2) RI(z) = Ṽh4◦T
(z) − Ṽh4

(z),
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(5.3) RII(z) = Ṽh2◦T
(z) − Ṽh2

(z),

(5.4) RIII (z) = Ṽh0◦T −h0−[S,h0]
(z).

We want to bound ΩRI , . . ., ΩRIII by quantities that are independent of Ω for Ω sufficiently

large.

First we recall that for h : M → R, and G a symplectic transformation in M ,

(5.5) Ṽh◦G(z) = ([DG](z))−1Ṽh(G(z)),

by the chain rule. Moreover, by the definition of S, h4 we have

(5.6) RIII (z) =

∫ 1

0

{([DT α](z))−1Ṽh̃4
(T α(z)) − Ṽh̃4

(z)}dα, with h̃4 = h4 − h4.

Also, [DT α(z)]−1 = DT −α(T α(z)), ∀α ∈ [0, 1]. We further observe that D1T α
2 , D1T α

3 ,

D3T α
1 vanish identically, ∀α ∈ [0, 1], and that ([DT α(z)]−1)1,1 = D1T∞−α(T α(z)), ∀α ∈

[0, 1], where ()̇1,1 denotes the X , X block. These simplifications follow from the fact that

S depends only on the first two components (see [P1], p. 233).

To estimate RI(z), let f(z) = Ṽh4
(z). From (5.2), (5.5)

(5.7) RI(z) = [DT −1(T (z))](f(T (z)) − f(z)) + ([DT −1(T (z))] − I)f(z).

Using the simplifications above we have

(5.8) P1RI(z) = [D1T1
−1(T (z))](f1(T (z)) − f1(z)) + ([D1T1

−1(T (z))] − I)f1(z)

(in (5.8) I is the identity in X). Differentiating, using the vanishing of D1T2, D1T3, and

taking norms we have

(5.9) ||D1P1RI(z)||0 ≤ ||D2
1T −1

1 (T (z))||0,0||D1T1(z)||0||f1(T (z)) − f1(z)||+

+||D1T −1
1 (T (z))||0||D1(f1(T (z)) − f1(z))||0 + ||D2

1T −1
1 (T (z))||0,0||D1T1(z)||0||f1(z)||+

+||D1T −1
1 (T (z)) − I||0||D1f1((z))||0,

where ||·||0,0 is the operator norm inB(X,B(X,X)), ||·||0 is the operator norm in B(X,X),

and || · || is the norm in X .
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Similarly, differentiating (5.6) and noting that P1RIII is C1 in X , we have

(5.10) ||D1P1RIII (z)||0 ≤
∫ 1

0

||AIII(z, α)||0dα

with

(5.11) ||AIII(z, α)||0 ≤ ||D2
1T −α

1 (T α(z))||0,0||D1T α
1 (z)||0||f1(T α(z)) − f1(z)||+

+||D1T −α
1 (T α(z))||0||D1(f1(T α(z)) − f1(z))||0+

+||D2
1T −α

1 (T α(z))||0,0||D1T α
1 (z)||0||f1(z)||+

+||D1T −α
1 (T α(z)) − I||0||D1f1(T α(z))||0,

with f(z) = Ṽh̃4
, and the notation of (5.9) for the norms.

We estimate the various terms in (5.9), (5.11). To avoid repetition we assume that Ω

is large enough, and β
Ω

small enough for the Ω−, and β
Ω
− independent bounds of Lemmas

5.2-5.9 to hold.

First, in (5.9), and (5.11),

(5.12) ||P1f(z)|| < T3, ||D1P1f(z)||0 < T6,

with T3, T6 independent of Ω, β
Ω

by Lemma 5.6. Similarly, by Lemma 5.6, and T α(z) ∈
B(ρ) × S1 × R,

(5.13) ||P1f(T α(z)) − P1f(z)|| < T7, ∀α ∈ [0, 1],

with T7 independent of Ω, β
Ω .

Also, D1T1(z) = V(1) where V(t) satisfies

(5.14) V(t) = V(0) +

∫ t

0

[D1Ṽ
1
S (z(τ))]V(τ)dτ, V(0) = I,

with z(τ) the image of z = z(0) under the time−τ map of the flow of ṼS . By Lemma 5.7

and Gronwall we then have

(5.15) ||D1T1(z)||0 < T2,

with T2 independent of Ω, β
Ω .
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Similarly, D1T −1
1 (T (z)) = Ṽ(1), where Ṽ(t) satisfies

(5.16) Ṽ(t) = Ṽ(0) +

∫ t

0

[D1Ṽ
1
−S(z̃(τ))]Ṽ(τ)dτ, Ṽ(0) = I,

with z̃(τ) the image of T (z) = z̃(0) under the time−τ map of the flow of Ṽ−S . By Lemma

5.7, and Gronwall we then obtain

(5.17) ||D1T −1
1 (T (z)) − I||0 <

T9

Ω
,

(5.18) ||D1T −1
1 (T (z))||0 < T4,

with T9, T4 independent of Ω, β
Ω

.

Also,

(5.19) ||D1(f1(T (z)) − f1(z))||0 ≤ ||D1f1(T (z))||0||D1T1(z) − I||0+

||D1f1(T (z)) −D1f1(z)||0.

Using the variational equation for DT (z), Gronwall, and Lemma 5.7 we have

(5.20) ||D1T1(z) − I||0 <
T10

Ω
,

with T10 independent of Ω, β
Ω , moreover, by Lemma 5.8, the variational equation for

D1T1(z), and Gronwall

(5.21) ||D1f1(T (z)) −D1f1(z)||0 <
T11

Ω
,

with T11 independent of Ω, β
Ω

. By (5.19)-(5.21), and (5.12) we therefore obtain

(5.22) ||D1(f1(T (z)) − f1(z))||0 <
T8

Ω
,

with T8 independent of Ω, β
Ω .

To estimate D2
1T −1

1 (T (z)) we look at the equation for the second variation and obtain

that D2
1T −1

1 (T (z)) = W(1) where W(t) satisfies

(5.23) W(t)h = W(0)h+

∫ t

0

{D1Ṽ
1
−S(u(s))W(s)h+ [D2

1Ṽ
1
−S(u(s))V(s)h]V(s)}ds,
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W(0) = 0, where h ∈ X and V(t) satisfies (5.14). Furthermore

(5.24) ||D1Ṽ
1
−S(u(s))W(s)||0,0 ≤ ||D1Ṽ

1
−S(u(s))||0||W(s)||0,0,

||[D2
1Ṽ

1
−S(u(s))V(s)h]V(s)||0 ≤ ||D2

1Ṽ
1
−S(u(s))V(s)h||0||V(s)||0 ≤

(5.25) ≤ ||D2
1Ṽ

1
−S(u(s))||0,0||V(s)h||||V(s)||0,

hence

(5.26) ||[D2
1Ṽ

1
−S(u(s))V(s)(·)]V(s)||0,0 ≤ ||D2

1Ṽ
1
−S(u(s))||0,0(||V(s)||0)2.

Then, by Lemmas 5.7, 5.9, (5.23)-(5.26), and Gronwall we have

(5.27) ||D2
1T −1

1 (T (z))||0,0 <
T1

Ω
,

with T1 independent of Ω, β
Ω

.

Collecting the bounds (5.12), (5.13), (5.15), (5.17), (5.18), (5.22), (5.27) for the terms

of (5.9) we have

(5.28) ||D1P1RI(z)||0 <
C1

Ω
,

with C1 independent of Ω, β
Ω for Ω sufficiently large, β

Ω sufficiently small. To estimate

D1P1RII we use (5.9) with f(z) = Ṽh2
(z). Since h2 is independent of β, ω we similarly

have

(5.29) ||D1P1RII(z)||0 <
C2

Ω
,

with C2 independent of Ω, β
Ω for Ω sufficiently large, β

Ω sufficiently small.

In (5.11) we also have the terms of (5.9) with T , T −1, replaced by T α, T −α respec-

tively. We argue as above, using Gronwall up to a time α. The bounds are similar, and

uniform in α ∈ [0, 1], so that (5.10), (5.11) yield

(5.30) ||D1P1RIII (z)||0 <
C3

Ω
,

with C3 independent of Ω, β
Ω for Ω sufficiently large, βΩ sufficiently small.
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We sketch the proofs of the Lemmas 5-2-5.9 usd above.

Lemma 5.2 Let u, v ∈ B(ρ) ⊂ X . Then |h4(u) − h4(v)| ≤ k||u − v|| with k

independent of Ω, φ ∈ S1, and β
Ω .

Proof: Let a, b ∈ X , h4(a) =
∑

n∈Z |an|4. We easily obtain

(5.31) |h4(a) − h4(b)| ≤ (||a||2 + ||b||2)(||a||+ ||b||)||a− b||.

Recall that Lψ is norm continuous in ψ, and an isometry in X , ∀ψ ∈ [0, 2π]. Then by

(5.31) we have that for u, v ∈ B(ρ)

(5.32) |h4(a)−h4(b)| ≤
|γ|
2π

∫ 2π

0

(||Lψu||2 + ||Lψv||2)(||Lψu||+ ||Lψv||)||Lψu−Lψv||dψ ≤

≤ |γ|(||u||2 + ||v||2)(|u||+ ||v||)||u− v|| ≤ 4|γ|ρ3||u− v||.

Lemma 5.3 Let u, v ∈ B(ρ). Then

(5.33) ||P1Ṽh4
(u) − P1Ṽ

1
h4

(v)|| < C||u− v||,

with C independent of Ω, φ ∈ S1, and β
Ω .

Proof: Let a, b ∈ X , (g(a))n = |an|2an. We estimate

(5.34) ||g(a)− g(b)|| ≤ (||a||4 + ||b||4 + ||a||2||b||2) 1

2 ||a− b||.

Using the continuity and isometry properties of Lψ, as in Lemma 5.2, (5.34) implies that,

for u, v ∈ B(ρ),

(5.35) ||P1Ṽh4
(u) − P1Ṽh4

(v)|| ≤

≤ |γ|
2π

∫ π

0

(||Lψu||4 + ||Lψv||4 + ||Lψu||2||Lψv||2)
1

2 ||Lψu− Lψv||dψ ≤ 2
√

3|γ|ρ2||u− v||.
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Lemma 5.4 Let u, v ∈ B(ρ) × S1 × R, || · ||0 the operator norm in B(X,X). Then

(5.36) ||D1P1c ·X0(u) −D1P1c ·X0(v)||0 < K4
′||u− v||,

with K4
′ independent of Ω, φ ∈ S1, and β

Ω for Ω sufficiently large, and β
Ω sufficiently small.

Proof: We have c ·X0 = c1X
0
1 + c2X

0
2 , with c1, c2 as in (3.18). By Lemma 2.5

(5.37) |λc1(Ω)| ≤ π

2
, ∀Ω > Ω3,

and since n1 = −1, |c2| is bounded independently of Ω, and β
Ω

, provided that Ω > Ω3.

Similarly,

(5.38) |c1| =
1

|λ| |n2

2π

Ω
λ| ≤ π

2|λ| , ∀Ω > Ω3,

with λ fixed, i.e. independent of Ω, and β
Ω

. Also, for u ∈ X , the derivative of X0
2 is

(5.39) D1P1X
0
2 (u) = D1u = I,

i.e. independent of u. It therefore remains to estimate the Lipschitz constant for D1P1X
0
1 .

For u, v ∈ X , we have (see also (3.21), (3.22))

(5.40) [DgL(u)]v =
1

2π

∫ 2π

0

L†
ψ[Dg(Lψu)]Lψvdψ, with

(5.41) ([Dg(u)]v)n = 2|un|2vn + u2
nv

∗
n, n ∈ Z.

For a, b, v ∈ X , we then estimate that

(5.42) ||[Dg(a)−Dg(b)]v|| ≤
√

20(||a||2 + ||b||2)||a− b||||v||.

Using (5.39)-(5.42) and the properties of Lψ we have that for u, v ∈ B(ρ), w ∈ X ,

(5.43) ||[D1P1X
0
1 (u) −D1P1X

0
1 (v)]w|| ≤

≤
√

20
|γ|
2π

∫ 2π

0

||L†
ψ||0(||Lψu||2 + ||Lψv||2)

1

2 ||Lψu− Lψv||dψ ≤

≤
√

20|γ|(||u||2 + ||v||2) 1

2 ||u− v||||w|| ≤
√

40|γ|ρ||u− v||||w||.
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Lemma 5.5 Let u ∈ B(ρ) × S1 × R, || · ||0 the operator norm in B(X,X). Then

(5.44) ||D1P1c ·X0(u)||0 < K3,

with K3 independent of Ω, φ ∈ S1, and β
Ω for Ω sufficiently large, and β

Ω sufficiently small.

Proof: Applying Lemma 5.4 with v = 0 we have that for u ∈ B(ρ)

(5.45) ||D1P1c ·X0(u)||0 ≤ |c1|||D1X
0
1 (u)||0 + |c2| ≤

√
10
π|γ|
2|λ| ρ

2 + 3π,

where the bound on |c2| used (3.18), (5.37).

Lemma 5.6 Let h be one of h2, h4, h̃4, z ∈ B(ρ) × S1 × R. Let || · ||0 be the

operator norm in B(X,X). Then ||Ṽ 1
h (z)||, ||D1Ṽ

1
h (z)||0 are bounded by constants that

are independent of Ω, φ ∈ S1, and β
Ω

for Ω sufficiently large, and β
Ω

sufficiently small.

Proof: For h = h4, h̃4 we estimate the Lipschitz constant for Ṽ 1
h , D1Ṽ

1
h as in Lemmas

5.3, 5.4 respectively and bound the norms as in Lemma 5.5.

Lemma 5.7 Let z ∈ B(ρ) × S1 × R. Let || · ||0 be the operator norm in B(X,X).

Then

(5.46) ||Ṽ 1
S (s)|| < t8

Ω
, ||D1Ṽ

1
S (z)||0 <

t2
Ω
,

with t8, t2 independent of Ω, φ ∈ S1, and β
Ω

.

Proof: From the expression for S in (3.9) we have that for u, v ∈ X , φ ∈ S1,

(5.47) Ṽ 1
S (u, φ) = −i2γ

Ω

∫ φ

0

(

L†
ψg(Lψu) − g(u)

)

dψ,

(5.48) [D1Ṽ
1
S (u, φ)]v = −i2γ

Ω

∫ φ

0

(

L†
ψ[Dg(Lψu) − g(u)]Lψv −Dg(u)v

)

dψ.
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Using the properties of Lψ, (5.47), and arguing as in Lemma 5.3 we have that for u ∈ B(ρ),

φ ∈ S1,

(5.49) ||Ṽ 1
S (u, φ)|| ≤ 2|γ|

Ω

∫ φ

0

(

||L†
ψg(Lψu)|| + ||g(u)||

)

dψ ≤ 8π|γ|ρ3

Ω

Similarly, using (5.48), and arguing as in Lemma 5.4, we have that for v ∈ X , u ∈ B(ρ),

φ ∈ S1,

(5.50)

||[D1Ṽ
1
S (u, φ)]v|| ≤ 2|γ|

Ω

∫ φ

0

(

||L†
ψDg(Lψu)Lψv|| + ||[Dg(u)]v||

)

dψ ≤ 4
√

20π|γ|ρ2

Ω
||v||.

The proof of Lemma 5.8 below uses the arguments of Lemma 5.4 and is omitted.

Lemma 5.8 Let f be one of Ṽh2
, Ṽh4

, Ṽh̃4
above, u, v ∈ B(ρ) × S1 × R. Let || · ||0

be the operator norm in B(X,X). Then

(5.51) ||D1P1f(u) −D1P1f(v)||0 < L||u− v||,

with L = L(f) independent of Ω, φ ∈ S1, and β
Ω .

Lemma 5.9 Let z ∈ B(ρ)×S1×R. Let ||·||0,0 be the operator norm in B(X,B(X,X)

Then

(5.52) ||D2
1Ṽ

1
S (z)||0,0 <

t1
Ω
,

with t1 independent of Ω, φ ∈ S1, and β
Ω .

Proof: Let a, w, v ∈ X . We compute

(5.53) ([D2g(a)](w, v))n = 2(an + a∗n)wnvn + 2anwnv
∗
n, n ∈ Z,

(5.54) [(D2L†
ψg)(Lψa)](w, v) = L†

ψ[D2g(Lψu))](Lψw,Lψv).

Using the properties of Lψ, and (5.53) we estimate

(5.55) ||[D2g(Lψa)](Lψw,Lψv)||2 ≤ 12||a||2||w||2||v||2.
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Using (5.53)-(5.55) we have that for u ∈ B(ρ), φ ∈ S1, w, v ∈ X

(5.56) ||[D2
1Ṽ

1
S (u, φ)](w, v)|| ≤

≤ 2|γ|
Ω

{

∫ φ

0

||L†
ψ[D2g(Lψu)](w, v)||dψ+

∫ φ

0

(

1

2π

∫ 2π

0

||L†
θ[D

2g(Lθu)](w, v)||dθ
)

}

≤

≤ 8π
√

12
|γ|
Ω

||u||||w||||v|| ≤ 8
√

12π|γ|ρ
Ω

||w||||v||.
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8. Figure Captions

Fig. 1: Conjectured range of validity of the one-peak breather continuation argument.

Fig. 2(a): Spectrum of (nontrivial modified) Floquet map for single peak breather. The

unit eigenvalue is double. D = 0, β
Ω = 0.4

13

Fig. 2(b): Single peak breather, averaged system. D = 0, β
Ω

= 0.4
13

Fig. 3(a): Spectrum of (nontrivial modified) Floquet map for single peak breather. The

unit eigenvalue is double. D = 0, β
Ω = 0.8

13

Fig. 3(b): Single peak breather, averaged system. D = 0, β
Ω = 0.8

13

Fig. 4(a): Spectrum of (nontrivial modified) Floquet map for single peak breather. The

unit eigenvalue is double. D = 0, β
Ω

= 2
13

Fig. 4(b): Single peak breather, averaged system. D = 0, β
Ω = 2

13

Fig. 5(a): Spectrum of (nontrivial modified) Floquet map for 2−peak breather. The unit

eigenvalue is double. D = 0, β
Ω = 0.1

13

Fig. 5(b): 2−peak breather, averaged system. D = 0, β
Ω

= 0.1
13

Fig. 6(a): Spectrum of (nontrivial modified) Floquet map for 3−peak breather. The unit

eigenvalue is double. D = 0, β
Ω = 0.1

13

Fig. 6(b): 3−peak breather, averaged system. D = 0, β
Ω = 0.1

13

46



Ω

β

β=Ω

β/Ω =α < 1

βο

ωο

Figure 1

47



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2(a)

48



0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

j

|A
(j)

|

Figure 2(b)

49



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3(a)

50



0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

j

|A
(j)

|

Figure 3(b)

51



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4(a)

52



0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

j

|A
(j)

|

Figure 4(b)

53



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5(a)

54



0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

j

|A
(j)

|

Figure 5(b)

55



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 6(a)

56



0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

j

|A
(j)

|

Figure 6(b)

57


