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Abstract

We study soliton solutions of a two-dimensional nonlocal NLS equation of Hartree-type with
a Bessel potential kernel. The equation models laser propagation in nematic liquid crystals.
Motivated by the experimental observation of spatially localized beams, see [CPA03], we show
existence, stability, regularity, and radial symmetry of energy minimizing soliton solutions in
R2. We also give theoretical lower bounds for the L2−norm (power) of these solitons, and show
that small L2−norm initial conditions lead to decaying solutions. We also present numerical
computations of radial soliton solutions. These solutions exhibit the properties expected by the
infinite plane theory, although we also see some finite (computational) domain effects, especially
solutions with arbitrarily small power.

1 Introduction

We study some basic properties of solitary waves in a nonlocal nonlinear Schrodinger (NLS) equation
modeling the propagation of laser light in nematic liquid crystals. The model was proposed by
Conti, Peccianti, and Assanto [CPA03], who also conducted experiments and found stable optical
solitons with a two-dimensional transverse profile. Other physical systems modeled by this or
related nonlocal NLS equations are discussed in [?]. The stabilization of solitons and related lack
of blow-up in the model is due to the nonlocality of the nonlinear interaction, and was predicted
by earlier theoretical works, see [GV80], [T86]. More recent experiments examined this effect in
other physical systems [RCMSC05]. The regularizing effect of the nonlocal nonlinearity makes the
liquid crystal system an interesting laboratory for studying two dimensional solitons, and there
is considerable recent experimental and theoretical work on vortices [YZK05], [MSXK09], soliton
interactions [CMMSW08], multicolor solitons [SS09] and other related coherent structures.

In the present work we show the existence, regularity, and radial symmetry of energy minimizing
solitons and compute radial solitons numerically. We also give analytically lower bounds for the
L2−norm (power) of energy minimizing solitons of negative energy. These thresholds involve best
constants for the Gagliardo-Nirenberg and Hardy-Littlewood inequalities. It is possible that initial
conditions with positive energy decay. While we do not settle this issue here, we use a different line
of reasoning to show that initial conditions with sufficiently small L2−norm decay.
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The original model of [CPA03] couples a Schrödinger equation for the evolution of the electric field
amplitude to a nonlinear elliptic equation for the director field. The time variable is physically the
distance along the optical axis. We here consider a common simplification of this model that leads
to an NLS equation with a cubic Hartree-type nonlinearity on the plane, see [YZK05], [SS09]. The
kernel of the Hartree nonlinearity is the two-dimensional Bessel potential (also known as a modified
Bessel function). The particular NLS equation in two dimensions was discussed earlier in [KRZ86]
where it was argued heuristically that it should have stable solitons, in contrast to the well known
situation for the standard cubic NLS in two dimensions, where solitons are unstable and solutions
can blow-up in finite time, see [W83]. Turytsin [T86] uses a Gagliardo-Nirenberg inequality and
energy conservation to argue that the H1−norm of the solutions should stay bounded for all times.
A simpler energy argument for bounded Hartree kernels appears in [BKWR02], [KBNNWRE04].
A rigorous version of the energy argument is also implicit in the work of Ginibre and Velo [GV80],
see also [C03], who consider cubic Hartree nonlinearities with more general kernels. that include
the one studied here.

Soliton solutions are obtained by minimizing the Hamiltonian of the nonlocal NLS over H1 func-
tions with fixed L2−norm (power). The existence of minimizers is shown here by a concentration-
compactness argument. We note that P.L. Lions [L84a] considered related quartic functionals with
Hartree kernels. We further use elliptic regularity and rearrangement inequalities to see that the
minimizer is a smooth radially symmetric decreasing function (up to translation and global phase
change). The existence of constrained energy minimizers assumes that the L2−norm is above a
certain threshold, and we give two explicit lower bounds for this threshold. The idea is to bound
below a ratio involving the quartic and quadratic parts of the energy, and the power. A similar
ratio appears in the work of Weinstein [W83] on the cubic NLS on the plane, although the present
problem is closer to the situation in the discrete NLS [W99]. Our power threshold estimate here
involves best constants for the Gagliardo-Nirenberg inequality, and we also note an alternative
bound involving constants for the Gagliardo-Nirenberg and Hardy-Littlewood inequalities.

We also include a fixed point argument in a space-time Lebesgue space that shows that initial
conditions with small power decay. This proof uses the Strichartz estimates for the free Schrödinger
evolution, and is similar to the one of [CW89] for the cubic power NLS on the plane. The decay
argument gives a third bound for the minimum L2−norm of H1 solitons. A similar combination
of absence of blow-up and decay for small solutions was also seen in the discrete cubic NLS in the
two dimensional integer lattice, see [SK05].

We also present numerical computations of positive, decreasing radial solitons. The numerical
study uses a finite circular domain with Dirichlet boundary conditions, and solitons are computed
using the method of [LMS13]. The numerical results are consistent with the existence of power
threshold for negative energy solitons, but we also observe soliton-like solutions of arbitrarily small
L2−norm and positive energy. The existence of these small solutions can be explained by an
abstract local bifurcation result, applied to the finite domain problem and its discretizations. We
thus expect that only part of the calculated solution branch yields approximations to solitons of
the R problem. The transition to the “spurious” part may involve collision with other solution
branches, see [FKM97] for such a scenario in the discrete NLS. This problem is left for further
work.

The paper is organized as follows. In Section 2 we state our main theoretical results for the
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planar (R2) problem. In Section 3 we review the main results used in the proofs. In Section 4
we prove the existence, regularity, and symmetry properties of the minimizing solitons. In Section
5 we prove the power threshold and small amplitude decay theorems for the planar problem. In
Section 6 we present the numerical results, and interpret them using the planar theory and a local
bifurcation argument for the finite domain problem. In Section 7 we briefly discuss some further
problems.

2 Soliton solutions of the nematicon equation

We consider the single-color nematicon equation in R
2

iut +
1

2
D∆u+ 2Aθu = 0, (2.1)

−∆θ +m2θ =
A

ν
|u|2, (2.2)

with constants D, A, ν > 0, e.g. compare with [SS09]. The variable u represents the electric
field envelope amplitude of an optical beam propagating through a nematic liquid crystal, while θ
represents the angle of the director field of the liquid crystal.

The inhomogeneous elliptic equation (2.2) has a unique solution θ = G(|u|2), with G a linear
operator of convolution type, so that system (2.1), (2.2) is equivalent to equation

iut +
1

2
D∆u+ 2AG(|u|2)u = 0. (2.3)

Taking the Fourier transform of (2.2) we have

θ̂k =
f̂k

|k|2 +m2
, with f =

A

ν
|u|2. (2.4)

Thus G is convolution with the inverse Fourier transform of Aν−1(|k|2 +m2)−1, and we have

θ(x) = G(|u|2)(x) =
A

ν

∫

R
2

K0(m|x− y|)|u(y)|2d2y (2.5)

where K0 is the modified Bessel function, see [B58], ch. III, or Bessel potential in R
2 (up to

constants), see [E98], p.186. G is a bounded, self-adjoint operator in L2(R2,C).

The kernel K0 : R
+ → R is positive, strictly decreasing and has the respective small and large r

asymptotics

K0(r) =
1

2π
(− log r + (log 2 − γ)) +O(r2), as r → 0 (2.6)

K0(r) =
1

2π

√

π

2r
e−r

(

1 +O(r−1)
)

, as r → ∞, (2.7)

with γ the Euler-Mascheroni constant, see [B58], ch. III-V. We also use the notation

K0,µ(r) = K0(µr), µ, r > 0. (2.8)
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To avoid the singularity ofK0 at the origin, some authors have studied the nematicon system (2.3)
using bounded kernels with a comparable fast decay at infinity, such as Gaussians, see [YLP06],
[KBNNWRE04], [BKWR02]. Most of the qualitative results below seem to apply to these models
as well, see [SBEK06] for some differences.

The nematicon equation (2.3) with θ = G(|u|2), G as above, can be also written formally as

ut = −i δH
δu∗

, with H =

∫

R2

(

D

2
|∇u|2 −A|u|2G(|u|2)

)

, (2.9)

i.e. H is the Hamiltonian or energy of (2.3). Another conserved quantity of (2.3) is the power P ,
defined as

P (u) =

∫

R2

|u|2, (2.10)

see [SS99] for other conserved quantities.

In contrast to the two-dimensional cubic NLS whose solutions can blow up in finite time, see e.g.
[GV79], [W83], the nonlocal analogue (2.3) with G as in (2.5) has solutions that exist for all times.

To state the simplest long time existence result we let Lp(RN ) = Lp(RN ; C), Hs(R2) = Hs(R2; C),
s ∈ R. We then have:

Theorem 2.1 The initial value problem for (2.3) with u(0) ∈ H1(R2) has a unique solution u ∈
C0(R;H1(R2)) ∩ C1(R;H−1(R2)). Moreover, ||u(t)||H1(R2) ≤M0 for some M0 > 0, for all t ∈ R.

The local existence follows from a standard fixed point argument. Global existence follows by a
conservation of energy argument using the idea of [T86]. We give an abbreviated proof, since the
argument is also implicit in [GV80], see also [C03], ch. 6.

The experimental observation of spatially localized solutions motivates the study of solutions of
of (2.3) of the form u(x, t) = e−iωtψ(x). Then ψ must satisfy

ωψ = −D
2

∆ψ − 2AψG(|ψ|2). (2.11)

To solve (2.11) we look for minimizers of H over H1 functions of constant L2 norm. Such solutions
also satisfy a nonlinear orbital stability property.

The operations of global phase change and translation are defined respectively as (gφψ)(x) =
eiφψ(x), φ ∈ R arbitrary (and independent of x), and (τyψ)(x) = ψ(x−y), y ∈ R

2. They both take
solutions of (2.11) to solutions of (2.11), and also leave the Hamiltonian H and the other conserved
quantities above invariant.

Let λ > 0 and define
Iλ = inf{H(u) : u ∈ H1(R2), P (u) = λ}. (2.12)

A u∗ ∈ H1(R2), P (u0) = λ, satisfying H(u∗) = Iλ is referred to as a minimizer or ground state (of
H at power λ). The set of minimizers of H at power λ is denoted as Mλ.
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Theorem 2.2 There exists λ0 > 0 such that for all λ > λ0 we have: (i) The set Mλ is nonempty.
(ii) Any u∗ ∈ Mλ is a C2 solution of equation (2.11), and can be chosen to be real-valued, i.e.
there exists φ ∈ R such that gφu∗ is real-valued. (iii) For any real u∗ ∈ Mλ we can choose y ∈ R

2

such that τyu∗ is positive, radial, and strictly decreasing.

The proof of (i) uses the concentration-compactness lemma of P.L. Lions, [L84a], [L84b]. In
fact, these works already considered various classes of Hartree-type nonlinearities with integrability
properties satisfied by the kernel K0 in a somewhat different functional. The C2 regularity of (ii)
follows from the differentiability of the functional H, and elliptic regularity arguments (which apply
to other critical points of H as well). In view of the invariance of H, and P under global phase
change and translation, parts (ii) and (iii) state that minimizers are real up to global phase rotation,
and radially symmetric, up to translation. Part (iii) uses rearrangement arguments. Conservation
of H along trajectories of (2.3) and (iv) imply the following well known property, see e.g. [C03],
ch. 8.

Corollary 2.3 Let λ > λ0. The set Mλ of solutions of (2.11) is orbitaly stable.

The fact that the H1 norm remains bounded, and the conservation of energy also imply that
trajectories with initial conditions of negative energy cannot lead to decay.

Corollary 2.4 Consider a solution u of (2.3) as in Theorem 2.1 with initial condition u0 satisfying
H(u0) < 0. Such u(t) can not satisfy ||u(t)||L∞(R2) → 0 as t→ ±∞.

The proof of Theorem 2.2 uses the fact that there exist states u ∈ H1 satisfying H(u) < 0. We
see that for λ sufficiently large such states exist, and this is the origin of the condition λ > λ0 in
Theorem 2.2. The smallest possible value of such a threshold λ0 is not known, but we show that it
cannot be arbitrarily small.

Proposition 2.5 Let v ∈ H1(R2) satisfy H(v) < 0. Then P (v) > λ∗ = max{λ1, λ2}, where

λ1 =
Dν

2A2

m2

(κ2,4, 1
2

)4
, λ2 =

Dν

2A2

m2

(c2,2)
1

2 (κ2,4, 1
2

)4||K0||L1(R2)

, (2.13)

where the constants κ2,4, 1
2

, and c2,2 appear in the Gagliardo-Nirenberg (Lemma 3.1), and Hardy-

Littlewood (Lemma 3.10) inequalities respectively.

Proposition 2.13 is obtained by examining the ratio between a product of the L2 norms of u, ∇u,
and the quartic part V of H, for u ∈ H1(R2), as in [W83], [W99]. The bounds λ1, λ2 follow from
alternative upper estimates of V that lead to a cancellation of the test functions from this ratio.

The above imply non-existence of negative energy solitons of small power. A more direct proof
of the existence of a power threshold for solitons, i.e. any H1 solutions of (2.11), is given by the
following:
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Theorem 2.6 Consider the solution u of the initial value problem (2.3) with initial condition
u(0) ∈ H1(R2), as in Theorem 2.1. There exists a λ3 such that ||u(0)||L2(R2) ≤ λ3 implies that
||u(t)||L4(R2) → 0 as t→ +∞.

We see below that the L4−norm of solutions of Theorem 2.1 remains bounded for all times. By
Theorem 2.6, if the power of the initial condition is sufficiently small, then the L4−norm of the
solution decays.

Corollary 2.7 There can not be solutions ψ ∈ H1(R2) of (2.11) with arbitrarily small L2−norm.

Theorem 2.6 uses the Strichartz estimates for dispersive decay of the free Schrödinger evolution
on the plane, and the origin of the bound λ3 is quite different. At present we have not compared or
estimated numerically the bounds λ1, λ2, λ3 (see [W83] for λ1). It may also be that negative energy
H1 initial conditions lead to decay. In the cubic NLS case this follows from the virial identity and
may require some extra assumptions see [SS99], [C03].

In Section 6 we also present numerical soliton profiles, obtained by looking for radial solutions of
(2.11). We discretize (2.11) in a finite disc and use Dirichlet boundary conditions. The numerical
study exhibits profiles with the properties expected by Theorem 2.2, and gives indirect evidence
for the existence of a power threshold for negative energy solitons in Proposition 2.13. The finite
domain evolution is not expected to have the decay properties of Theorem 2.6, and we also argue
that the analogue of (2.11) should have solutions with arbitrarily small L2−norm. Such solutions
are also seen numerically.

The finite domain problem is left for future work. As we discuss in Sections 6 and 7, it could
give numerical estimates of the threshold λ∗ of Proposition 2.13. Another open problem is the
uniqueness of the minimizers, modulo translations and global phase rotations.

3 Some preliminary results

We state some basic results that will be used in the following sections.

Lemma 3.1 (Gagliardo-Nirenberg inequality, dimension N = 2. See [C03], p.9.) For all u ∈
H1(R2)) we have

||u||Lp(R2) ≤ κ2,p,α||∇u||αL2(R2)||u||1−α
L2(R2)

, 1 ≤ p ≤ ∞, α ∈ [0, 1), p =
2

1 − α
. (3.1)

The constant κ2,p,α only depends on p, and α.

To prove Theorem 2.2 (i) we solve a minimization problem in unbounded domains. The main
technical tool is the P.L. Lions’ concentration compacteness Lemma below.

Lemma 3.2 (Concentration-compactness Principle. See [L84a], [C03], ch. 1.7). If λ > 0 and
{uk}k∈N is a bounded sequence of H1 with P (uk) ≡ ||uk||2L2(RN )

= λ, then there exists a subse-

quence {ukj
}j∈N for which one of the following properties holds:
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1) (compactness) There exists a sequence {xj}j∈N and u ∈ H1(RN ) such that {τxkj
u}j∈N con-

verges to u in Lp(RN ), ∀p ∈ [2, 2N(N − 2)−1) if N > 1 (∀p ∈ [2,∞], if N = 1).

2) (vanishing) {ukj
}j∈N converges to the origin in Lp(RN ), ∀p ∈ (2, 2N(N − 2)−1) if N > 1

(∀p ∈ (2,∞], if N = 1).

3) (splitting) There exists 0 < µ < λ such that for every ε > 0 there exists j0 ≥ 0 and two
sequences {u′j}j∈N ⊆ H1(RN ) and {u′′j }j∈N ⊆ H1(RN ) with compact disjoint supports, such that for
j ≥ j0

||u′j ||H1(RN ) + ||u′′j ||H1(RN ) ≤ 4 sup
j∈N

||ukj
||H1(RN ), (3.2)

||ukj
− u′j − u′′j ||L2(RN ) ≤ ε, (3.3)

∣

∣

∣

∣

∫

RN

|u′j(x)|N dx− µ

∣

∣

∣

∣

≤ ε, (3.4)

∣

∣

∣

∣

∫

RN

|u′′j (x)|2 dx+ µ− λ

∣

∣

∣

∣

≤ ε, (3.5)

||∇u′j ||L2(RN ) + ||∇u′′j ||L2(RN ) ≤ ||∇ukj
||L2(RN ) + ε. (3.6)

Moreover, dist(supp(u′j), supp(u′′j )) > 2ε−1.

Remark 3.3 In the case of splitting of Lemma 3.2 (i.e. case 3) u′j, u
′′
j can be chosen to be of the

form u′j(x) = ρ(x − xj)um(x), u′′j (x) = θ(x − xj)um(x), where {xj}j∈N is a sequence of points in

R
N , and the functions ρ, ϑ : R

N → [0, 1] are C∞, radial and satisfy

(i) |ρ′(|x|)|, |ϑ′(|x|)| < ǫ, ∀x ∈ R
N ,

(ii) ρ(x) = 1, if |x| < t1; ρ(x) = 0, if |x| ≥ t1 + 2ǫ−1,

ϑ(x) = 1, if |x| > t2; ϑ(x) = 0, if |x| ≤ t2 − 2ǫ−1,

where 0 < t1 < t2, t2 − t1 > 6ǫ−1. The above imply that suppρ ∩ suppϑ = ∅, dist(suppρ, suppϑ) >
2ǫ−1. Moreover 1 − ρ(x − xj) − ϑ(x − xj) ≥ 0, ∀x, xj ∈ R

N . More details can be found in [C03]
sec. 1.7, [ZGJT01], Lemma 6.1.

The proof that minimizers are radial uses some results on rearrangements in R
N . A Lebesgue

measurable function f : R
M → R is decreasing at infinity if the Lebesgue measure µL(Ut(f))

of Ut(f) = {x ∈ R
N : |f(x)| > t} is finite, ∀t ≥ 0. Let A ⊂ R

N be a Borel set. Then
A is the N−ball around the origin satisfying µL(A) = µL(A). Also if χA is the characteristic
function of A, then χA = χA. The radial symmetrization f of f decreasing at infinity is defined as
f(x) =

∫

R
χUt(f)(x) dt. We the have the following:

Lemma 3.4 (Riesz’s rearrangement inequality. See [LL01], ch. 3) Let f , g, h : R
N → R be

nonegative and decreasing at infinity. Then
∫

RN

f(x) g(x − y) h(y) dx dy ≤
∫

RN

f(x) g(x− y) h(y) dx dy. (3.7)
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If g is radial and strictly decreasing, equality holds only if both f(x − z), g(x − z) are radial for
some z ∈ R

N .

Lemma 3.5 (Polya-Szegö inequality. See [LL01], p.189) Let f ∈ H1(RN ) be nonegative and de-
creasing at infinity. Then

∫

RN

|∇f(x)|2 dx ≤
∫

RN

|∇f(x)|2 dx. (3.8)

Equality holds only if f(x− z) is radial for some z ∈ R
N .

Also, in the estimation of the power threshold λ0 we use two results on maximal functions. Recall
that the maximal function Mf of f ∈ L1

loc(R
N ; R) as

Mf(x) = sup
r>0

|Br(x)|−1

∫

Br(x)
|f(y)|dy, (3.9)

where |Br(x)| is the N−volume of the N−ball of radius r centered at x ∈ R
N . We then have:

Lemma 3.6 (Hardy-Littlewood inequality. See [LP09], ch. 2) Let 1 < p <∞. Then
∫

RN

|Mf(x)|p dx ≤ cN,p

∫

RN

|f(x)|p dx. (3.10)

Lemma 3.7 (See [LP09], ch. 2) Let K ∈ L1(RN ; R) be radial, positive, and decreasing, and
f ∈ L1(RN ; R). Then

sup
τ>0

∣

∣

∣

∣

∫

RN

τ−N K(τ−1(x− y)) f(y) dy

∣

∣

∣

∣

≤ ||K||L1(RN ) Mf(x), ∀x ∈ R
N . (3.11)

We recall the Strichartz estimates for the free Schrödinger evolution operator S, defined by letting
u(t) = S(t)φ = eit∆φ be the unique solution of ut = i∆u with initial condition φ ∈ L2(R2). A
pair of indices (q, r) is admissible (in dimension N = 2) if 1/q + 1/r = 1/2, with r ∈ [0,∞). The
following inequalities involving the space-time Lebesgue spaces can be found in [C03], ch. 2.3.

Lemma 3.8 (Strichartz estimates, dimension N = 2.) Let (q, r) be an admissible pair, and let S
be the free Schrödinger evolution operator S in L2(R2), as above. Let [0, T ] be a closed interval in
R, with T ∈ [0,∞]. Then

||S(·)φ||Lq([0,T ],Lr(R2)) ≤ C1||φ||L2(R2). (3.12)

Also, let (γ, ρ) be an admissible pair and assume that

f ∈ Lγ′

([0, T ], Lρ′(R2)), (3.13)

with the notation p′ = (1 − 1/p)−1. Then

||
∫ (·)

0
S((·) − s)f(s)ds||Lq([0,T ],Lr(R2)) ≤ C2||f ||Lγ′ ([0,T ],Lρ′(R2)). (3.14)

The constants C1, C2 (for N = 2) only depend on r, and r, ρ respectively, i.e. are independent of
T .

Remark 3.9 The time-rescaled operator S̃ = S(αt), α = D/2 > 0, satisfies estimates (3.12),
(3.14) with C1, C2 replaced by C̃1 = α−1/qC1, C̃2 = α−1/2−1/γ′

C2 respectively.
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4 Existence and symmetry of ground states

We use the following notation. Let X = H1(R2), its dual X∗ = H−1(R2). Let Z, Y be real or
complex Banach spaces. Then L(Z, Y ) denotes the set of linear bounded operators from Z to Y .
Also, for f : Z → Y Fréchet differentiable, Df ∈ L(Z, Y ) denotes the Fréchet derivative of f .

Proof of Theorem 2.1:

Proof. To show local existence in C0([0, T ],X), for some T > 0, we use Picard iteration for the
integral form of the variational equation, i.e. we let

[G(u)](t) = S̃(t)φ+ [F (u)](t), (4.1)

with S̃(t) = eit
D
2

∆, and

[F (u)](t) = −i2A
∫ t

0
S̃(t− s)θ(s)u(s)ds, θ = G(|u|2) (4.2)

and solve u = G(u). The linear part generates an isometry in X and it is enough to check that the
nonlinearity of (2.3) is Lipschitz inX. We apply the Gagliardo-Nirenberg inequality (3.1) repeatedly
(see the global existence argument below) and omit the details. Taking the time derivative of the
integral equation we see that the time derivative ut belongs to X∗. By u ∈ C0([0, T ],X) we easily
check that ut is also continuous in t. Note also that the time T depends only on ||u0||H1(R2).

The local existence theory implies the conservation ofH, and P for solutions u(t) ∈ C0(R;H1(R2))∩
C1(R;H−1(R2)), see e.g. [GV80]. By Hölder’s inequality the quartic part of H satisfies

∫

R2

(K0,m ∗ |u|2)(x)|u(x)|2dx ≤ ||K0,m ∗ |u|2||L∞(R2)||u||2L2(R2) (4.3)

≤ λ||K0,m||Lq(R2)||u||2L2p′ (R2)
, q > 1, p′ =

q

q − 1
, (4.4)

where λ = P (u) = ||u||2L2(R2) remains constant along the trajectory. By the small and large

|x| asymptotics of K0 in (2.6), (2.7) respectively, the Lq norm of K0 is finite, ∀q > 1. By the
Gagliardo-Nirenberg inequality (3.1) we then have

∫

R2

(K0,m ∗ |u|2)(x)|u(x)|2dx ≤ λκ2,2p′,βm
− 2

q ||K0||Lq(R2)||∇u||2β
L2(R2)

||u||2(1−β)
L2(R2)

(4.5)

= λ2−βκ2,2p′,βm
− 2

q ||K0||Lq(R2)||∇u||2β
L2(R2)

, (4.6)

with q > 1, β = q−1.

We can choose any q > 1, so that β < 1. Then

H(u) ≥ D

2
(||∇u||2L2(R2) − λ) − λ2−βκ2,2p′,βm

− 2

qA2ν−1||K0||Lq(R2)||∇u||2β
L2(R2)

, (4.7)

with β < 1, q > 1.

By the conservation ofH, P , (4.7) implies that ||u(t)||H1(R2) must remain bounded for all t ∈ [0, T ]
by a constant M0 that depends only on ||u0||H1(R2). Then the existence interval can be extended
to R, and ||u(t)||H1(R2) ≤M0, ∀t ∈ R. ✷
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The proof of Theorem 2.2 follows from the lemmas below. Lemma 4.1 shows that a minimizing
sequence is bounded in H1 and that the concentrated compactness hypotheses apply. Lemma 4.3
shows that the infimum Iλ is strictly negative, provided the λ is sufficiently large. This eliminates
the vanishing scenario. Lemma 4.5 rules out the splitting scenario.

Lemma 4.1 Iλ > −∞. Moreover, any minimizing sequence {un}n∈N ∈ H1(R2), P (un) = λ, for
H satisfies ||un||H1(R2) ≤M , ∀n ∈ N.

Proof. Clearly, Iλ <∞. Also each element un of the minimizing sequence satisfies inequality (4.7).
This implies that if ||∇un||L2(R2) diverges, then Iλ = ∞, a contradiction. Thus ||un||H1(R2) ≤ M ,
∀n ∈ N. By (4.7) we then have a finite lower bound

H(un) ≥ −1

2
λ2−βκ2,2p′,βm

− 2

qA2ν−1||K0||M2β , ∀n ∈ N. (4.8)

✷

Lemma 4.2 (Subadditivity) Iλ1+λ2
< Iλ1

+ Iλ2
.

The proof relies on the fact that the negative part of H(u) is homogeneous quartic in u, and is
thus similar to the proof for power nonlinearities.

Lemma 4.3 There exists a λ0 > 0 such that Iλ < 0, ∀λ > λ0.

Proof. We consider a radial trial function v(r) = af( r
s) ∈ H1(R2), r = |x|, and show that we can

adjust the parameters a, s > 0 to make H(v) < 0, provided ||v||L2(R2) is sufficiently large. We have

||v||2L2(R2) = 2πa2s2I2, ||∇v||2L2(R2) = 2πa2I22, V (v) = 2πAν−1a4s4Aν−1I4(s), (4.9)

where V is the quartic part H, and

I2 =

∫ ∞

0
rf2(r)dr, I22 =

∫ ∞

0
r(f ′(r))2dr, (4.10)

I4(s) =

∫ ∞

0

∫ ∞

0
I(sr1, sr2)r1r2f

2(r1)f
2(r2)dr1 dr2, (4.11)

I(sr1, sr2) = 2

∫ π

0
K0(sm(r21 + r22 − 2r1r2 cos θ)1/2)dθ. (4.12)

We eliminate the parameter a in (4.9) using ||v||2L2(R2) = 2πa2s2I2 = λ. Then

H(v) =
DI22
2s2I2

λ− A2

2πνI2
2

I4(s)λ
2. (4.13)

Fix a function f , and s. Then I2, I22 are positive constants. By the positivity of G, I4(s) is also a
positive constant. By (4.13), H(v) < 0 for λ sufficiently large. ✷
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Equation (4.13) with an arbitrary choice of f , s also leads to a rough estimate for λ0. For
instance, [SS09] calculated some of the integrals for the test function f(r) = sech2r. We see in the
next section that we can estimate λ0 above by a quantity that is independent of s and f .

To eliminate the vanishing scenario of Lemma 3.2 we observe that by (4.3), p′ > 1, vanishing for
the minimizing sequence implies the vanishing of the quartic part of H. Then Iλ ≤ 0, contradicting
Lemma 4.3 for λ > λ0. A preliminary step is:

Lemma 4.4 Let u, v ∈ H1(R2) satisfying dist(supp(u), supp(v)) > 2ε−1. Let G be as in (2.5).
Then

∫

R2

|u(x)|2(G(|v|2))(x)dx ≤ µ||u||2L2(R2)||v||2L2(R2)e
− δ

ε , (4.14)

with µ, δ > 0 depending only on G.

Proof. We use the fact that for r ≤ R, K0,m(r) ≤ µe−δr for some µ, δ > 0, by (2.7). Let
Su = supp(u), Sv = supp(v), and assume dist(Su, Sv) > 2ǫ−1 with 2ε−1 > R. Then

∫

R2

|u|2G(|u|2) = Aν−1

∫

Su

|u(x)|2
(

∫

Sv

K0,m(x− y)|v(y)|2 dy
)

dx

≤ Aν−1(supx∈Su,y∈Sv
K0,m(x− y))

∫

Su

|u(x)|2
(

∫

Sv

|v(y)|2 dy
)

dx. (4.15)

Since K0,m is decreasing, (4.16) becomes

∫

R2

|u|2G(|u|2) ≤ e−2δε−1

Aν−1

∫

Su

|u(x)|2
(

∫

Sv

|v(y)|2 dy
)

dx, (4.16)

and we immediately obtain the lemma. ✷

Lemma 4.5 Let {un}n∈N ∈ H1(R2), P (un) = λ, be a minimizing sequence for H. Then splitting
does not occur.

Proof. We consider the splitting scenario: ∀ǫ > 0 there exist an m0 > 0, and subsequence {um}m∈N

such that m > m0 implies that um = u′m + u′′m + hm, with u′m, u′′m as in Lemma 3.2. We then have

H(um) = H(u′m) +H(u′′m) +Rm, (4.17)
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where Rm = R1
m +R2

m +R3
m, and

R1
m = D

∫

R2

Re[(∇u′m)∗ · ∇u′′m]

−A
∫

R2

[|u′m|2G(2Re((u′m)∗u′′m)) + |u′′m|2G(2Re((u′m)∗u′′m))] (4.18)

R2
m = D

∫

R2

Re[(∇um)∗ · ∇hm] (4.19)

R3
m = −A

∫

R2

(|u′m|2 + |u′′m|2) + |h′m|2)G(|h′m|2)

−A

∫

R2

(|u′m|2 + |u′′m|2 + |h′m|2)G(2Re((u′m)∗h′m))

−A

∫

R2

(|u′m|2 + |u′′m|2 + |h′m|2)G(2Re((u′′m)∗h′m))

−A
∫

R2

|h′m|2G(|u′m|2 + |u′′m|2). (4.20)

The overlap of u′m, u′′m vanishes by Lemma 3.2, and the term on the first line of R1
m vanishes. The

second line is bounded by Lemma 4.4 and is thus of O(ǫ).

To estimate R3
m we note that by Lemma 3.2 we have ||hm||L2(R2) ≤ ǫ, and ||∇hm||L2(R2) ≤

5||um||H1(R2) (≤ 5M). We then apply Hölder’s inequality and Lemma 3.1 to see that each term

that is proportional to hm is bounded by a term CM ǫ
ν , with ν > 1

2 , and CM a constant that
depends only on M .

The integrand in R2
m is proportional to ∇hm. This is not necessarily small, however it can be

written as small plus nonegative: using Remark 3.3.1 we may write hm = (1− ρm + ϑm)um, where
ρm(x) = ρ(|x− xm|), ϑm(x) = ϑ(|x− xm|). Then

R2
m = A

∫

R2

(−Re[(∇um)∗ · (∇ρm + ∇ϑm)um]) +A

∫

R2

(1 − ρm + ϑm)|∇um|2). (4.21)

Using the bounds on ∂rρm, ∂rϑm from Remark 3.3.1, the first integral, denoted by R̃2
m, is estimated

as

|R̃2
m| ≤ D

∫

R2

|Re[(∇um)∗(∇ρm + ∇ϑm)um]|

≤ D||∇um||L2(R2)||(∇ρm + ∇ϑm)um||L2(R2)

≤ D||∇um||L2(R2)||∇ρm + ∇ϑm||L∞(R2)||um||L2(R2) ≤ C̃ǫ, (4.22)

with C̃ depending on M . The second integral in (4.21) is nonegative.

Also, by Lemma 3.3, P (u′m) = λ1 + β′m, P (u′′m) = λ2 + β′′m, with λ1 + λ2 = λ, |β′m|, |β′′m| < ǫ.
Letting

ũ′m =

√
λ1u

′
m

√

λ1 + β′m
, ũ′′m =

√
λ2u

′′
m

√

λ2 + β′′m
, r′m = H(u′m) −H(ũ′m), r′′m = H(u′′m) −H(ũ′′m) (4.23)

we easily check that |r′m|, |r′′m| ≤ Cǫ, with C depending on M only.
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Collecting the above we have

H(um) ≥ H(ũ′m) +H(ũ′′m) + R̃m, with |R̃m| ≤ C̃ǫ1/2, (4.24)

and C̃ depending on M . Taking ǫ sufficiently small and using strict subadditivity we have H(um) >
Iλ(z), a contradiction. ✷

Therefore by Lemma 3.2 we have a subsequence {uj}j∈N of the minimizing sequence that con-
verges to some u ∈ H1(R2) in Lp(R2), p ∈ [2,∞). Then {V (uj)}j∈N converges to V (u), where
V is the quartic part of H. Also, {uj}j∈N convergences weakly to u in H1(R2), and by the weak
lower-semicontinuity of the square of the norm we see that {H(uj)}j∈N converges to H(u) = Iλ.
We then have convergence of the H1−norms and finally that {uj}j∈N converges to u in H1(R2).

Thus the existence of the minimizer is complete.

To prove Corollary 2.4, we estimate the quartic term of H, essentially as in the proof of the fact
that minimizing sequences cannot vanish. In particular, using Hölder, Gagliardo-Nirenberg, and
the boundedness of G in L2,

∫

R2

G(|u|2)|u|2 ≤ ||u||L∞(R2)

∫

R2

G(|u|2)|u|

≤ CG||u||L∞(R2)|||u|2||L2(R2)||u||L2(R2)

≤ CGκ2,4, 1
2

λ||∇u||L2(R2)||u||L∞(R2), (4.25)

where CG is the operator norm of G in L2. The fact that the H1 norm of the solutions remains
bounded implies that if ||u(t)||L∞(R2) vanishes as t → ∞ then the quartic part of H also vanishes
as t → ∞, and we have a contradiction with the conservation of energy and the assumption of
negative energy at t = 0.

We now see the other basic properties of minimizers.

Lemma 4.6 H, P are C1 functionals in X.

Proof. To check that H is Fréchet differentiable in X, and that DH ∈ L(X;R) = X∗ = H−1(R2)
is the right hand side of (2.11) it suffices to show that H ′(ψ) = −D

2 ∆ψ− 2AψG(|ψ|2) is an element
of X∗, ∀ψ ∈ X, and that H ′(ψ) satisfies H(ψ+w)−H(ψ)− (H ′(ψ), w) = o(||w||X ), as ||w||X → 0,
∀ψ ∈ X, i.e. we show that DH = H ′. These follow by repeatedly applying Hölder and Gagliardo-
Nirenberg. The continuity follows in the same way. The case of P is clear. ✷

Lemma 4.7 Let u∗ ∈ H1(R2) satisfy H(u∗) = Iλ, λ > λ0. Then u∗ is a C2 solution of (2.11).

Proof. By Lemma 4.6 the minimizer ψ = u∗ ∈ H1(R2) satisfies (2.11) in H−1. By Sobolev
embedding ψ ∈ H1(R2) implies ψ ∈ L4(R2) and |ψ|2 ∈ L2(R2). Then θ = G(|ψ|2) ∈ H2(R2) by
(2.4), hence θ ∈ L∞(R2) by Sobolev embedding. Then θψ ∈ L2(R2), and we have ψ = (−∆ +
1)−1[θψ + (ω + 1)ψ] ∈ H2(R2) by (2.11). We use ψ ∈ H2(R2), θ ∈ H2(R2) and Hölder to estimate
∇(θψ). We see that θψ ∈ H1(R2), and use (2.11) to show ψ ∈ H3(R2). We repeat the argument for
the second partial derivatives of θψ. We show that ψ ∈ H3(R2), θ ∈ H2(R2) imply θψ ∈ H2(R2),

13



hence ψ ∈ H4(R2) by (2.11). Hence the restriction of ψ to any bounded domain with smooth
boundary Ω ⊂ R

2 belongs to H4(Ω) and is C2 by the Sobolev inequality, see e.g. [E98], p. 270. ✷

By Lemma 4.6 the argument of Lemma 4.7 applies to all critical points of H in P = λ, and can
be extended to show arbitrarily high regularity.

Lemma 4.8 Let u∗ ∈ H1(R2) satisfy H(u∗) = Iλ, λ > λ0. Then u∗ can be chosen to be a real,
positive function.

Proof. Let U be the set where u∗ 6= 0. In U we can use the polar representation u∗ = R(x)eiΘ(x),
with R, Θ real C2 functions in U , and R positive. The quadratic part of H is

∫

R2

|∇u|2 dx =

∫

R2

(|∇R|2 +R2|∇Θ|2) dx, (4.26)

while the quartic part of H and P depend only on R. If u∗ is not real and positive in U we can then
strictly decrease H by considering the new function w∗ = e−iΘu∗. This contradicts the assumption
that u∗ is a minimizer. Thus u∗ is nonnegative. By the C2 regularity of the minimizer u∗, ψ = u∗
satisfies (2.11), that is

−D
2

∆ψ − ωψ = 2AψG(|ψ|2) ≥ 0, ∀x ∈ R
2. (4.27)

Since ψ ≥ 0, ∀x ∈ R
2, we have that ψ is strictly positive on any open ball in R

2 by Hopf’s lemma,
see e.g. [E98], p.519. ✷

Lemma 4.9 Let u∗ ∈ H1(R2) be a real positive function satisfying H(u∗) = Iλ, λ > λ0. Then u∗
is radial and decreasing.

Proof. By Lemmas 4.7, 4.8 the minimizer f = u∗ ∈ H1(R2) can be chosen to be positive and
smooth. It is therefore decaying at infinity in the sense of the rearrangement lemmas. The same
applis to f2. If f (equivalently f2) is not radial, then by Lemmas 3.4, 3.5 we have H(f) < H(f),
with P (f) = P (f), a contradiction. ✷

By the above, minimizers of H for P = λ > λ0 are, up to translation and global phase rotation,
of the form f(|x|), with f(|x|) a positive, C2 solution of (2.11). By θ = G(|f |2), and the properties
of the kernel K0, we check that θ is also C2, positive, and radial.

To study these minimizers in more detail we look for radial solutions u(r), θ(r), r = |x|, of (2.11)

u′′ + r−1u′ = −2ω

D
u− 4A

D
θu, (4.28)

θ′′ + r−1θ′ = m2θ − A

ν
u2. (4.29)

Since the u′′(0), θ′′(0) are well defined we will require that u′(0) = θ′(0) = 0. These equations are
studied numerically in Section 6.

Also, by (2.11), and the fact that Iλ < 0 for λ > λ0, we have

ω = λ−1(Iλ − V (u)) < 0, (4.30)

where V is the quartic part of H.
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5 Threshold bounds and decay of small solutions

We now prove Theorem 2.13.

Proof. To estimate the power λ0 we consider again the form of the Hamiltonian (4.13), written as

H = λ(A− Bλ), A =
D

2

I22
4s2I2

, B =
A

2π

I4(s)

I2
2

, (5.1)

and we have H(v) < 0 provided that

λ >
A
B =

πD

2A

I2I22
s2I4(s)

. (5.2)

We show that the ratio A/B can be bounded above by a quantity that is independent of s and
f .

We may assume that f ∈ C∞
0 (R2). Also, by (4.10), (4.11), (4.12), we have

I2 = (2π)−1||f ||2L2(R2), I22 = (2π)−1||∇f ||2L2(R2), I4(s) = (2π)−1

∫

R2

f2 (K0,sm ∗ f2), (5.3)

with K0,µ(r) as in (2.8).

We will give two bounds based on different estimates of the quartic part of the energy I4(s).

In the first argument we set s = 1, suitably redefining f . We use the fact that G is bounded
in L2, with operator norm CG, and the Gagliardo-Nirenberg inequality. Note also that by (2.4),
CG ≤ Aν−1m−2. Then by (5.3)

I4(s) ≤ ν(2πA)−1

(
∫

R2

|G(|f |2|2
)1/2 (

∫

R2

|f |4
)1/2

≤ ν(2πA)−1CG

∫

R2

|f |4

≤ (2πm2)−1(κ2,4, 1
2

)4||f ||2L2(R2)||∇f ||2L2(R2). (5.4)

Therefore
A
B ≥ Dν

2A2

m2

(κ2,4, 1
2

)4
, (5.5)

which we denote λ1.

Alternatively, letting τ = s−1,

s2I4(s) = (2π)−1

∫

R2

f2 (τ−2K0,τ−1m ∗ f2), (5.6)

and using Lemma 3.11

τ−2(K0,τ−1m ∗ f2)(x) ≤ sup
τ>0

∫

R2

τ−2K0,m(τ−1(x− y))f2(y)dy ≤ ||K0,m||L1(R2)M(f2)(x). (5.7)
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Applying (5.7) to (5.6), and using Hölder we have

s2I4(s) ≤ (2π)−1||K0,m||L1(R2)

∫

R2

f2(x) Mf2(x) dx

≤ (2π)−1||K0,m||L1(R2)

(
∫

R2

(f2(x))2 dx

)
1

2

(
∫

R2

(M(f2)(x))2 dx

)
1

2

, (5.8)

∀s > 0. The integral of the maximal function is estimated using the Hardy-Littlewood inequality
of Lemma 3.10 as

∫

R2

(M(f2)(x))2 dx ≤ c2,2

∫

R2

(f2(x))2 dx. (5.9)

Then (5.8) becomes

s2I4(s) ≤ (2π)−1(c2,2)
1

2 ||K0,m||L1(R2)

∫

R2

f4, ∀s > 0. (5.10)

The last integral is estimated by the Gagliardo-Nirenberg inequality, so that

s2I4(s) ≤ (2πm2)−1(c2,2)
1

2 (κ2,4, 1
2

)4||K0||L1(R2)||f ||2L2(R2)||∇f ||2L2(R2), ∀s > 0. (5.11)

We have here also used ||K0,m||L1(R2) = m−2||K0,m||L1(R2), by (2.8). Therefore, by (5.11), (5.1),
and (5.3) the powers of ||f ||L2(R2), ||∇f ||L2(R2) are the same in the numerator and denominator,
thus

A
B ≥ Dν

2A2

m2

(c2,2)
1

2 (κ2,4, 1
2

)4||K0||L1(R2)

, (5.12)

denoted λ2. ✷

Remark 5.1 The use of radial functions in bounding the ratio A
B

is not essential. By Lemmas 3.4,
3.5 we can always use radial rearrangements to decrease A, and increase B.

In what follows we show the decay of small solutions of the initial value problem, as in Theorem
2.6. The argument is based on Picard iteration for u = G(u), see (4.1) in the proof of Theorem
2.1, in L4([0, T ], L4(R2)). The argument we use is essentially that of [CW89] for the cubic NLS in
R

2. We complete the proof of Theorem 2.6 by showing that for small initial conditions in H1 these
rougher solutions coincide with the continuous trajectories of Theorem 2.1.

Let δ > 0, and define U2δ([0, T ]) by

U2δ([0, T ]) = {v ∈ L4([0, T ], L4(R2)) : ||v||L4([0,T ],L4(R2)) ≤ 2δ}. (5.13)

Note that (q, r) = (4, 4) is an admissible pair for the Strichartz estimates. Although the factor D/2
can be scaled away we prefer to use the rescaled free Schrödinger propagator S̃(t) = S(D

2 t), see
Remark 3.9.

Let U2δ = U2δ([0,∞)), and L4,4 = L4([0,∞), L4(R2)).

The following implies the existence of a unique solution to the initial value problem u = G(u) in
L4,4 (and L4([0, T ], L4(R2)) for arbitrary T ≥ 0).
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Lemma 5.2 Let δ ∈ (0, δ0). There exists δ̃ (depending on δ) such that if ||φ||L2(R2) < δ̃ then, G is
a contraction in U2δ.

Proof. We need to show that (i) G maps U2δ to its interior, and (ii) that G is a contraction in U2δ.

First, by the first Strichartz estimate (3.12), given δ > 0, we can choose ||φ||L2(R2) small enough
so that

||S̃(·)φ||L4,4 < δ. (5.14)

To show that G maps U2δ to its interior it suffices to show that ||F (u)(·)||L4,4 < δ.

Let σ = 4, σ′ = 4/3. By Hölder, and the boundedness of G in L2 we have

∫

R2

|θu|σ′ ≤
(

∫

R2

|θ| 32σ′

)1/r (
∫

R2

|u|3σ′

)1/p

≤
(

∫

R2

|θ|2
)2/3 (

∫

R2

|u|4
)1/3

≤ C4/3
G

∫

R2

|u|4, (5.15)

therefore
(

∫ ∞

0

∫

R2

|θu|σ′

)1/σ′

≤
(

∫ ∞

0
C4/3

G

∫

R2

|u|4
)3/4

≤ CG(||u||L4,4)3. (5.16)

Applying the second Strichartz estimate (3.14) to F in (4.2), and using (5.16)

||F ||L4,4 ≤ C̃2||θu||Lσ′,σ′ ≤ C̃2CG(||u||L4,4)3. (5.17)

Thus, u ∈ U2δ, δ sufficiently small, imply

||F ||L4,4 ≤ C2CG(2δ)3 < δ, (5.18)

as required.

To see that G is a contraction we use the linearity of G to write

G(|u|2)u−G(|v|2)v = G(|u|2)(u− v) +G(|u|2 − |v|2)v
= G(|u|2)(u− v) +G((|u| + |v|)(|u| − |v|))v. (5.19)

By the positivity of the kernel K0 we also have that h ≤ f everywhere implies G(h) ≤ G(f)
everywhere, thus (5.19) becomes

|G(|u|2)u−G(|v|2)v| ≤ G(|u|2 + |v|2)|u− v| +G((|u| + |v|)|u − v|))(|u| + |v|). (5.20)

By the definition of G, and the second Strichartz estimate (3.14) applied to F in (4.2),

||G(u) − G(v)||L4,4 = ||F (u) − F (v)||L4,4

≤ C̃2||G(|u|2)u−G(|v|2)v||Lσ′,σ′

= C̃2

(
∫ ∞

0

∫

R2

|G(|u|2)u−G(|v|2)v|σ′

)1/σ′

, (5.21)
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with σ′ = 4/3. Using (5.20) and the triangle inequality for the norm in Lσ′,σ′

we then have

||G(u) − G(v)||L4,4 ≤ ||G(|u|2 + |v|2)|u− v|||Lσ′,σ′ + ||G((|u| + |v|)|u − v|))(|u| + |v|)||Lσ′,σ′ . (5.22)

Using Hölder repeatedly, and the boundedness of G in L2, the first term in (5.22) is estimated as

||G(|u|2 + |v|2)|u− v|||Lσ′,σ′ ≤
[

∫ ∞

0

(
∫

R2

|G(|u|2 + |v|2)| 32σ′

)2/3 (
∫

R2

|u− v|3σ′

)1/3
]1/σ′

≤
[

∫ ∞

0
C4/3

G

(
∫

R2

(|u|2 + |v|2)2
)2/3 (

∫

R2

|u− v|4
)1/3

]3/4

≤ CG

[

(
∫ ∞

0

∫

R2

(|u|2 + |v|2)2
)2/3 (

∫ ∞

0

∫

R2

|u− v|4
)1/3

]3/4

≤ CG

(
∫ ∞

0

∫

R2

||u|2 + |v|2|2
)1/2

||u− v||L4,4

≤
√

2CG

(

||u||2L4,4 + ||v||2L4,4

)

||u− v||L4,4 . (5.23)

Letting w̃ = (|u| + |v|)|u− v| we similarly estimate the second term in (5.22) as

||G((w̃)(|u| + |v|)||Lσ′,σ′ ≤
[

∫ ∞

0

(
∫

R2

|G(w̃)| 32σ′

)2/3 (
∫

R2

(|u| + |v|)3σ′

)1/3
]1/σ′

≤
[

∫ ∞

0
C4/3

G

(
∫

R2

|w̃|2
)2/3 (

∫

R2

(|u| + |v|)4
)1/3

]3/4

≤ CG

[

∫ ∞

0

(
∫

R2

(|u| + |v|)4
)2/3 (

∫

R2

|u− v|4
)1/3

]3/4

≤ CG

[

(
∫ ∞

0

∫

R2

(|u| + |v|)4
)2/3 (

∫ ∞

0

∫

R2

|u− v|4
)1/3

]3/4

≤ CG

(
∫ ∞

0

∫

R2

(|u| + |v|)4
)1/2

||u− v||L4,4

≤
√

8CG

(

||u||2L4,4 + ||v||2L4,4

)

||u− v||L4,4 . (5.24)

By (5.21), (5.23), (5.24), and u ∈ U2δ we have

||G(u) − G(v)||L4,4 ≤ 8CGC̃2(2δ)
2||u− v||L4,4 (5.25)

and thus for δ sufficiently small G is a contraction in U2δ. ✷

By (5.18), (5.25) we can choose δ ∈ (0, δ0) with 32C̃2CGδ
2
0 < 1. Then by (5.14) we can choose δ̃

such that C̃1δ̃ < δ.

We now complete the proof of Theorem 2.6.
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Proof. We consider an initial condition u(0) ∈ H1(R2) and the corresponding unique solution u of
Theorem (2.1). We also assume that φ = u(0) also satisfies the small L2−norm condition (5.14),
with δ as in Lemma 5.2.

It enough to show that this trajectory, restricted to any time interval [0, T ], belongs to the interior
of U2δ([0, T ]). It thus coincides with the solution of Lemma 5.2, i.e. the unique fixed point of G in
U2δ([0, T ]), and belongs to L4([0, T ], L4(R2)), ∀T > 0.

We note that the conservation of the L2−norm, the Gagliardo-Nirenberg inequality, and the fact
that theH1−norm of u remains bounded for all times, imply that u also belongs to C0([0,∞), L4(R2)),
moreover its L4−norm remains bounded for all times. Let q(t) be the L4([0, t], LR2

) norm of u re-
stricted to [0, t]. Clearly, q is a continuous, non-decreasing function of t ≥ 0, with q(0) = 0. We
therefore have that for t > 0 small enough u ∈ U2δ([0, t]). Since u is the fixed point of G, it also
belongs to the interior of U2δ([0, t]) by the smallness assumption on the L2−norm of φ. Suppose
that there exists a time t1 > 0 with q(t1) > 2δ. Then by continuity, there exists t̃ ∈ (0, t1) with
q(t̃) = 2δ. But u restricted to [0, t̃] is a fixed point of G and belongs to the boundary of U2δ([0, t̃]),
a contradiction, since the condition on the L2−norm of φ implies that G maps U2δ([0, t̃]) to its
interior. Thus the trajectory u of Theorem 2.1 remains in the interior of U2δ([0, T ]), ∀T > 0.

We therefore have Theorem 2.6, with λ3 = δ̃. ✷

6 Numerical solutions and small solutions in bounded domains

We now examine numerical solutions of the radial equation (2.11). We are interested in positive,
decaying solutions. Such solutions can be found (approximated) numerically, but we also see some
departures from the infinite plane theory above that we attribute to differences between the infinite
and finite domain soliton solutions. We write (2.1) and (2.2) with u(r, t) = ψ(r)e−iωt (which leads
to (2.11)) and obtain

Lψ + ωψ = 0, ν∆ψ − qθ = −ψ2, where L =
1

2
ψ′′ +

1

2
r−1ψ′ + 2θψ, (6.1)

ω = −(Lψ,ψ)

(ψ,ψ)
, (f, g) =

∫ ∞

0
fgdr,

where A = D = 1 and q = m2ν. Furthermore, (6.1) is discretized in a finite computational
domain with r ∈ [0, Rmax]. We impose Dirichlet boundary conditions ψ(Rmax) = θ(Rmax) = 0.
We typically use Rmax = 100. In the range of parameters we examined, ψ and θ have decayed
to O(10−10) at r = 100, and increasing the computational domain does not cause the solutions to
change. The spatial discretization uses second-order central finite differences over a uniform grid
with spacings ∆r = 0.1. Decreasing the value of ∆r does not alter the results, so numerically
converged results are obtained. The integral (f, g) is similarly evaluated by quadrature over the
computational domain.

The imaginary time iterative method of [LMS13] is used to find numerically solitary wave profiles.
This numerical method uses a given optical power P = (ψ2, r), to converge to a member of the
solitary wave family. The corresponding propagation constant ω is found by solving the third of
(6.1).
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Figure 1: (color online) The nematic solitary wave, |ψ| and θ versus r. Shown are |ψ| (red, solid
lines) and θ (green, dashed lines). The parameters are (a) P = 10, (b) P = 1 and (c) P = 0.5 with
the other parameters ν = 25 and q = 1. (In (c) we used Rmax = 200.)

20



 0

 -1

 -2

 -3

 -4

 -5

 0  2  4  6  8  10

ω

power

Figure 2: (color online) The propagation constant versus power, ω versus P , for the nematic solitary
wave. Shown are curves for ν = 25 (upper curve), ν = 12.5 and ν = 5 (lower curve) (all red solid
lines). The other parameter q = 1.

Figure 1(a), (b) and (c) show nematic solitary waves, |ψ| and θ, versus r. Shown are the electric
field amplitude |ψ| and the director response θ. The parameters are (a) P = 10, (b) P = 1 and
P = 0.5 with ν = 25 and q = 1. For P = 10 the propagation constant is ω = −0.828. This
wave has a large amplitude, with |ψ| = 2.77 and is relatively more localized, with a half-width (the
location at which the amplitude is half the peak amplitude) of w = 1.85. As ν is large, the director
response, which has a peak amplitude of θ = 0.630, is broader than the electric field, indicating the
nonlocal nature of the solitary wave.

As the power is reduced the amplitude of the nematic wave decreases and its width increases. For
P = 1 the propagation constant is ω = −1.55×10−2, the peak amplitude is |ψ| = 0.175 and the half-
width w = 9.2. The director response θ now has a very small magnitude (as θ = O(|ψ|2)), and has
a peak amplitude of θ = 1.52 × 10−2. For P = 0.5 the propagation constant is ω = −7.14 × 10−4

and the peak amplitude is decreased and the width increased further. The peak amplitude is
|ψ| = 4.42 × 10−2 and the half-width w = 25.4 has a peak amplitude of θ = 1.62 × 10−3.

Figure 2 shows the propagation constant versus power, ω versus P , for the nematic solitary
wave. The parameters are ν = 25, ν = 12.5 and ν = 5, all with q = 1. The figure shows that
there is a unique correspondence between power and propagation constant. We have not examined,
however, the possibility of bifurcations leading to other branches connected to the calculated one.
We also see that, for a given power level, the magnitude of the propagation constant increases as
the nonlocality parameter ν increases.

The numerical results above show examples of radial, positive and decreasing soliton solutions,
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Figure 3: (color online) The Hamiltonian versus power, H versus P , for the nematic solitary wave.
Shown are curves for ν = 25 (lower curve), ν = 12.5 and ν = 5 (upper curve) (all red solid lines).
The other parameter q = 1.

as expected by the theory in the plane. On the other hand, the numerical study does not see any
minimum power level for nematic solitary waves. We argue below that this should follow from the
theory of (6.1) in the finite domain (disc).

We further use the numerical solutions to compute the Hamiltonian

H =
1

2
(ψ2

r , r) − (rθ, ψ), (6.2)

and the ratio

R =
P 〈ψ2

r , r〉
〈r, θψ〉 , (6.3)

i.e. R = A/2B, see (5.1). The ratio is computed using the finite domain functions and integrals,
and θ is the solution of the second equation in (6.1) with Dirichlet boundary conditions. Clearly, a
function f defined in [0, Rmax] can be extended to function f̃ in [0,∞) as f̃(r) = 0, r > Rmax, note
however that the computed θ is slightly different from G(f̃2). Since u decays rapidly we expect
that this discrepancy is small.

Figure 3 shows the Hamiltonian versus power, H versus P . The parameters are ν = 25, ν = 12.5
and ν = 5, all with q = 1. The curves suggest that H is a negative quantity for for sufficiently large
values of the power. In fact at small values of P ≤ 0.495, H becomes positive. The magnitude of
the Hamiltonian for P < 0.495 does not exceed O(10−5). Also, for a fixed power H increases as
the nonlocality parameter ν increases.
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Figure 4: (color online) The ratio (6.3) versus power, R versus P , for the nematic solitary wave.
The parameters are ν = 5 and q = 1 (red solid line).

Figure 4 shows the ratio (6.3) versus power, R versus P . The parameters are ν = 5 and q = 1.
The curve shows that R is a positive quantity for all values of the power. As P → 0 the ratio
approaches a value R ≈ 0.99. For large enough power, the ratio R increases with P . Hence this
quantity does not approach zero as the power P → 0 but asymptotes towards a finite limit. Varying
the value of ν does not change the qualitative features of Figure 4. The ratio R ≈ 1 in the limit of
small power and increases in value for large power, for all values of ν. As both the numerator and
denominator of (6.3) approach zero as P → 0 the calculation of (6.3) breaks down in this limit,
due to round off error. Our calculation is done for a minimum P = 0.05 at which R = 0.985 and
the numerator and denominator are both O(10−6).

The above calculation is consistent with the existence of a lower bound on A/B, as shown in
Section 5. Also, the change of sign of the energy, and the existence of positive energy states are
consistent with the analogue of expression H = λ(A− Bλ), λ = P , of (5.1) for the finite domain:
as P decreases and A/B remains bounded above, H becomes positive. As P is decreased further
H remains small, and vanishes since it is proportional to λA.

The fact that P vanishes with A/B bounded above also implies that ratio of the quadratic part
to the quartic part of H increases without bound as the power P vanishes, i.e. the linear part
becomes dominant.

A related heuristic for solutions with P = ǫ, ǫ→ 0, is obtained by the rescaling ψ =
√
ǫv. Then,

v(r) is normalized, P (v) = 1, and satisfies

−∆v = ωv + 4ǫG̃(v2)v, v(Rmax) = 0, (6.4)
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where G̃(v2) = θ, the radial solution of −ν∆θ + qθ = v2, with v(Rmax) = 0.

The existence of numerical solutions of arbitrarily small power can be explained by the theory
of the radial equation (6.4) in a finite disc with Dirichlet boundary conditions. One approach is
through local bifurcation theory, where we can show the existence of small nontrivial solutions with
ω near the eigenvalues of the radial Dirichlet Laplacian.

In particular, consider the abstract nonlinear eigenvalue equation

Γx = (χ0 + χ)x + g(x), (6.5)

with x ∈ E, Γ ∈ L(B,E), B, E real Banach spaces, and g : B → E a C1 function in B satisfying
g(0) = 0, Dg(0) = 0, χ0 an eigenvalue of Γ of finite multiplicity. Using e.g. statement II.2,3 of
[B72], if χ0 has odd multiplicity we then have a nontrival solution (x, χ) near the trivial solution
x = 0, χ = 0.

In the present problem (6.1) can be written as (6.5) by choosing B the closure of H2
r (Ω,R) ∩

H1
0,r(Ω,R) in the H2−norm, E = L2(Ω,R), where Ω = {r ∈ R

2 : |r| < Rmax}, and the subscript
r denotes restriction to radial functions. Also Γ is the radial Dirichlet Laplacian, χ0 its lowest
eigenvalue and g the nonlinear term ψθ (times a suitable constant) .

The properties of Γ, g required to apply the abstract result are easy to check, using e.g. the
boundedness of ψ2 7→ θ(ψ2) in L2(Ω,R), and L4(Ω,R) ⊂ H1(Ω,R), and we also use the fact that
χ0 is simple. Thus the existence of a nontrivial solution of arbitrarily small power is guaranteed,
and this shows that there is no contradiction with the infinite domain decay result. The bifurcation
approach to (6.1) can yield more information, but will not be pursued further here.

The abstract setup of (6.5) also applies to the finite dimensional discretizations used in the
numerical implementation.

We also remark that a comparable discrepancy between the finite and infinite problem should
occur in discrete NLS equations. The theoretical works of Weinstein [W99], and Stefanov and
Kevrekidis [SK05] show that discrete NLS equations with power nonlinearities in infinite lattices
can also exhibit critical power/dimension combinations for the existence of analogous soliton-type
solutions. In particular, what we see here is analogous to what is seen for the cubic NLS in
a two-dimensional infinite lattice. That problem can be considered in a finite sublattice with
different (analogues of) boundary conditions, e.g. periodic. The finite version can also preserve the
variational structure of the analogue of (2.11), so that the existence of solutions of the form e−iωtψn,
with n the lattice site index, follows from the fact that we are extremizing a smooth function, the
analogue of H, over a compact set, the (2N − 1)−sphere P = λ > 0 in R

2N , where N the number
of sites in the finite sublattice. Clearly, a minimizer will exist for any λ > 0, i.e. for arbitrarily
small power.

In [FKM97], [F96] the existence of power thresholds for discrete NLS equations in infinite lattices
is inferred from secondary bifurcations along the branch bifurcating from the trivial solution at the
lowest linear eigenvalue of the discrete Laplacian, specifically the limit of the value of the power at
this secondary bifurcation as the lattice size diverges. A similar approach may be applicable to the
present case and can lead to a numerical estimate of λ∗, however a search of bifurcations along the
branch exhibited here is left for future work.
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7 Discussion

We have obtained results on the existence, regularity and symmetry of energy minimizing soliton
solutions of the nematicon equation on the plane. We have also provided power threshold bounds
for the existence of such solutions, and have shown that any solutions with small power must
eventually decay.

For powers above a certain threshold, the Hartree-type nonlocality of the nematicon equation
avoids the finite-time blow-up behavior of the two dimensional cubic NLS. For smaller power the
two models show qualitatively similar behavior, in the sense that they both lead to decay. A similar
situation arises in the two dimensional cubic NLS on a 2-D infinite lattice, as seen in [W99], [SK05].

A more careful comparison of the upper bounds on the power of the negative energy states, and
the condition for decay of solutions is left for future work. Also of interest is the structure of the
set of constrained energy minimizers Mλ, e.g. whether the constrained minimizers are isolated
or unique modulo translations and phase rotations. These properties would imply a more precise
stability statement.

The numerical study of solitons uses a finite domain with Dirichlet boundary conditions. We
find solutions with the properties expected by the infinite plane theory, but we also see solutions
of arbitrarily small power. The small power solutions can be understood as branches bifurcating
from the eigenfunctions of the Dirichlet Laplacian on the disc. We speculate that the branch of the
numerical solutions we find contains a part that corresponds to approximations of solutions to the
infinite problem, as well as a part of ”spurious” solutions of small power. Following the approach of
[FKM97], it is also possible that the computed branch has bifurcation points that separate the two
parts, and yield further branches we have not seen. An interesting related problem is the study of
threshold and bifurcation phenomena for discretizations or radial equations of NLS type, in finite
and (semi-)infinite lattices.
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