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Abstract
We consider the discrete NLS equation with a small-amplitude time-periodic
diffraction coefficient which models diffraction management in nonlinear
lattices. In the space of one dimension and at the zero-amplitude diffraction
management, multi-peak localized modes (called discrete solitons or discrete
breathers) are stationary solutions of the discrete NLS equation which are
uniquely continued from the anti-continuum limit, where they are compactly
supported on finitely many non-zero nodes. We prove that the multi-peak
localized modes are uniquely continued to the time-periodic space-localized
solutions for small-amplitude diffraction management if the period of the
diffraction coefficient is not multiple to the period of the stationary solution.
The same result is extended to multi-peaked localized modes in the space of
two and three dimensions (which include discrete vortices) under additional
non-degeneracy assumptions on the stationary solutions in the anti-continuum
limit.

Mathematics Subject Classification: 37K60, 35Q55, 70K42, 34C25,
47H14, 58C15

1. Introduction

Diffraction management of discrete localized modes in nonlinear lattices was proposed in
experiments with arrays of coupled optical waveguides [ESMA00,GSK07]. The experiments
were modelled theoretically in [AM01] by using a non-local averaged equation derived from a
discrete NLS equation with a time-periodic diffraction coefficient. The approximation error and
well-posedness of the averaged lattice equation were considered in the rigorous work [M05].
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The existence of a single-peak localized solution was proved in [P05] using the variational
method. Multi-peak localized modes of the averaged equation were constructed analytically
and numerically in [P06] from the anti-continuum limit of the nonlinear lattice and at the
small-amplitude diffraction management.

We shall consider here the same limit of small coupling between lattice nodes and small
amplitude of the diffraction management but we will address the discrete NLS equation with
a time-periodic diffraction coefficient avoiding passage to the averaged lattice equation. We
shall ask if the stationary localized solutions of the discrete NLS equation at the zero amplitude
of diffraction management persist for small non-zero values of the time-periodic diffraction
coefficient.

In a similar problem in the context of dispersion management in the continuous NLS
equation, it is known that the main question has a negative answer in the sense that the stationary
localized solution decays in the time-evolution dynamics due to parametric resonance with the
time-periodic dispersion term. This phenomenon was modelled analytically and numerically
for the strong dispersion management in [YK01] and for the weak dispersion management
in [PY04]. Rigorous analysis of radiative decay of small-amplitude localized solutions
due to parametric resonance with the time-periodic cubic nonlinear term is developed in
[CKP06] in the context of a three-dimensional NLS equation with a space-localized
potential.

Our main goal here is to show that the main question has a positive answer in the context of
small-amplitude diffraction management in the discrete NLS equation provided that the period
of the time-periodic diffraction term is not a multiple of the period of a stationary localized
mode. Note that this ‘non-resonance condition’ is violated in the continuous systems. The
difference between the continuous and discrete systems comes from the fact that the continuous
Laplacian is unbounded while its discrete analogue is bounded.

The main result of this paper was recently reported in [P08] for a one-peak discrete
soliton. Our current consideration is more general and includes multi-peak localized modes
in one [PKF05a], two [PKF05b] and three [LPK08] dimensions. Moreover, we use a different
analytical technique, which simplifies the proofs of [P08]. The idea of [P08] was to view
the periodic oscillations of discrete solitons under diffraction management as a 2-torus of a
Hamiltonian dynamical system with symmetries and to apply a theorem of Nekhoroshev on
persistence of invariant tori in Hamiltonian systems with additional conserved quantities. The
latter theorem was proved for finite-dimensional systems in [BG02] but the method of the proof
can be easily extended to some infinite-dimensional systems (e.g. for quasiperiodic breathers
in Hamiltonian lattices with symmetries [BV02]).

The idea of our work is more closely related to the Lyapunov theorem on persistence of
periodic orbits in the Hamiltonian dynamical systems [L92]. (See [MH92] for the proof of the
Lyapunov theorem in the finite-dimensional problems.) We rewrite the problem of existence of
time-periodic space-localized solutions as a fixed-point problem. Then, the implicit function
theorem is invoked for continuations of stationary solutions from the anti-continuum limit
and for continuations of the time-periodic solutions from the stationary solutions. Our
consideration differs from the Lyapunov theorem in autonomous systems [L92] by the fact
that the period of the time-periodic solution is defined by the time-periodic coefficient of the
non-autonomous system and it is hence fixed.

Our paper is constructed as follows. The main results in one dimension are formulated
in section 2. Continuations of stationary and time-periodic multi-peak localized solutions
are constructed in section 3. Generalizations for localized modes in higher dimensions are
developed in section 4.
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2. Formulation of the main results

We consider the discrete nonlinear Schrödinger (NLS) equation in the form

iu̇n = |un|2un + δ�un + εD(t)�un, ∀n ∈ Z, (2.1)

where un(t) : R �→ C satisfies lim|n|→∞ un(t) = 0, �un = un+1 − 2un + un−1 is the discrete
Laplacian, δ and ε are two small real-valued parameters and D(t) is a real-valued, bounded and
T -periodic function with zero mean. Parameter δ represents the mean value of the diffraction
coefficient, while ε represents the standard deviation of the varying part of the diffraction
coefficient. We shall use � = 2π/T for frequency of the time-periodic coefficient D(t).

Let us consider the initial value problem for the discrete NLS equation (2.1) in the space
of square-summable complex-valued functions on Z with the norm ‖u(t)‖2

l2 = ∑
n∈Z

|un(t)|2.
By the gauge invariance of the discrete NLS equation (2.1) with respect to the transformation
u(t) �→ eiθu(t) for any θ ∈ R, the l2-norm is constant in time ‖u(t)‖2

l2 = ‖u(t0)‖2
l2 for all

t, t0 ∈ R provided that lim|n|→∞ un(t) = 0. To generalize our consideration, we shall use a
weighted l2-space with the norm

‖u(t)‖2
l2
p

=
∑
n∈Z

(1 + n2)p|un(t)|2, p � 0. (2.2)

For any p � 0, we have ||u||l∞ � ||u||l2
p
, hence l2

p is a Banach algebra with respect to pointwise
multiplication. The existence of solutions is proved in the following theorem.

Theorem 2.1. Assume that D(t) is a real-valued, bounded, piecewise-continuous, and T -
periodic function on t ∈ R. Then, for any t0 ∈ R, p � 0, and u0 ∈ l2

p(Z), there exists a
unique solution u(t) ∈ l2

p(Z) for all t ∈ R, such that u(t0) = u0. Moreover, the solution u(t)

is piecewise continuously differentiable in t ∈ R.

Proof. We consider the case where D(t) is continuous, the piecewise case follows by a slight
modification of the arguments below. Let p � 0. To prove local existence we write (2.1) as

un(t) = un(t0) − i
∫ t

t0

[|un(t
′)|2un(t

′) +
(
δ + εD(t ′)

)
�un(t

′)
]

dt ′. (2.3)

For any τ , ρ > 0, using the fact that the l∞ norm is bounded by the l2
p norm, we see that the

right-hand side of (2.3) defines a Lipschitz continuous map in C0([t0, t0 +τ ], Bρ(u(t0))), where
Bρ(v) is a ball of radius ρ around the point v in l2

p(Z). The Lipschitz constant depends on τ , ρ,
δ, and the supremum of εD (and can be made independent of t , t0). Furthermore, choosing τ

sufficiently small we can also make the Lipschitz constant strictly smaller than unity. We thus
have a contraction in C0([t0, t0 + τ ], Bρ(u(t0))), and a unique fixed point. Using the continuity
of un(t) we check that un(t) is differentiable in t directly from (2.3).

To extend τ to infinity it is sufficient to bound the l2
p-norm of the solution. Multiplying

(2.1) by ūn and subtracting the complex conjugate equation, we eliminate the nonlinear term
in the equation

i
d

dt
|un|2 = (δ + εD(t)) (ūn�un − un�ūn) .

We write this equation as

|un(t)|2 = |un(t0)|2 − i

×
∫ t

t0

(
δ + εD(t ′)

) [
ūn(t

′)(un+1(t
′) + un−1(t

′)) − un(t
′)(ūn+1(t

′) + ūn−1(t
′))

]
dt ′. (2.4)
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By the Cauchy–Schwarz inequality, we obtain
∑

n∈Z
(1 + n2)p|un||un+1| � Cp‖u‖2

l2
p

for some

Cp > 0. Since |δ + εD(t)| � CD on R for some CD > 0, we obtain from (2.4) that

‖u(t)‖2
l2
p

� ‖u(t0)‖2
l2
p

+ C

∫ t

t0

‖u(t ′)‖2
l2
p

dt ′,

for C = 4CpCD > 0 and p � 0. The global bound on the l2
p-norm of the solution,

‖u(t)‖2
l2
p

� ‖u(t0)‖2
l2
p
eC|t−t0|, ∀t ∈ R,

follows from Gronwall’s inequality. �

Let us look for solutions of the discrete NLS equation in the form un(t) = e−iλt+iθ vn(t),
where λ ∈ R and θ ∈ R are arbitrary parameters and vn(t) satisfies the lattice differential
equation

iv̇n +
(
λ − |vn|2

)
vn = δ�vn + εD(t)�vn, ∀n ∈ Z, (2.5)

where vn(t) : R �→ C satisfies lim|n|→∞ vn(t) = 0. We note that the parameter θ does not
enter the lattice equation (2.5) due to gauge invariance of the discrete NLS equation (2.1).

If ε = 0, there exist stationary solutions v(t) = φ of the second-order difference equation

ε = 0 :
(
λ − |φn|2

)
φn = δ�φn, ∀n ∈ Z. (2.6)

Localized solutions of the difference equation (2.6) with lim|n|→∞ φn = 0 are uniquely
continued for small δ �= 0 from the compact solutions with finitely many non-zero nodes
at δ = 0 [MA94] (other results on existence of localized solutions can be found in
[BBJ00, PKF05a, W99]). These localized solutions are referred to both as discrete breathers
and discrete solitons. The former name is due to the fact that they are periodic solutions of the
discrete NLS equation (2.1) with the period τ = 2π/λ, while the latter name is due to the fact
that they are stationary solutions of the discrete NLS equation (2.5) with a fixed parameter λ.

The main result on construction of discrete solitons is described in the following theorem.

Theorem 2.2. Let U+, U− be finite subsets of Z and let U0 = Z \ {U+ ∪ U−}. Assume that
λ > 0 and consider a solution φ0 of the difference equation (2.6) with δ = 0

(φ0)n = 0, ∀n ∈ U0; (φ0)n = ±
√

λ, ∀n ∈ U±. (2.7)

Let p � 0. Then, there exists δ0 > 0 such that for |δ| < δ0 the difference equation (2.6) has a
unique solution φδ ∈ l2

p(Z) satisfying (φδ)n0 ∈ R\{0} for any fixed n0 ∈ U+ ∪ U− and

∀0 � δ < δ0 : ‖φδ − φ0‖l2
p

� Cδ, (2.8)

for some C > 0. Moreover, φδ is real and the dependence of φδ on δ is real analytic.

Remark 2.3. We shall call the localized solutions of theorem 2.2 the k-peak discrete solitons,
where k = dim(U+) + dim(U−). The proof of theorem 2.2 follows from [MA94] (see
also [P06]). The real analyticity statement is added in [PKF05a] as it follows from the real
analytic version of the implicit function theorem. The constant δ0 depends in general on U+,
U− and λ.

Our problem is now reformulated as a continuation of the time-independent solution
v(t) = φδ of the differential lattice equation (2.5) at ε = 0 to time-periodic space-localized
solutions v(t) of the same equation for small ε �= 0, where the values of λ > 0 and 0 < δ < δ0

are fixed. The main result of this paper is formulated in the following theorem.



Periodic oscillations of discrete NLS solitons in the presence of diffraction management 1269

Theorem 2.4. Fix U+, U−, λ > 0 and 0 < δ < δ0. Let φδ be a solution of the difference
equation (2.6) in l2

p(Z) for a fixed p � 0 and n0 ∈ U+ ∪U−. Assume that D(t) is a real-valued

T -periodic function in Hs([0, T ]) for any fixed s > 1
2 . Fix � = 2π/T such that λ �= m�

for all m ∈ N. Then, there exist ε0 > 0 which depends on δ and minm∈N |λ − m�| such that
the differential lattice equation (2.5) has a unique solution vε(t) in Xs,p = Hs([0, T ], l2

p(Z))

satisfying vε(t + T ) = vε(t) on t ∈ R, (vε)n0(0) ∈ R\{0}, and

∀0 � ε < ε0 : ‖vε(t) − φδ‖Xs,p
� Cε, (2.9)

for some C > 0. Moreover, the dependence of vε(t) on ε is real analytic.

Remark 2.5. If k = dim(U+)+ dim(U−) = 1, the conclusion of theorem 2.4 holds in the limit
δ → 0. However, if k � 2, the δ-dependent bound ε0 shrinks to zero as δ → 0. Therefore,
for k � 2, one cannot combine theorems 2.2 and 2.4 into one statement which would claim a
unique continuation of the limiting solution (2.7) with respect to both independent parameters
δ and ε.

Finally, the stability of periodic solutions vε(t) in the time evolution of the differential
lattice equation (2.5) for sufficiently small ε > 0 is inherited from stability of stationary
solutions φδ for ε = 0, according to the following theorem.

Theorem 2.6. Let δ �= 0 be sufficiently small. Let m� �= 2λ for all m ∈ N. Periodic solutions
vε(t) of theorem 2.4 for sufficiently small ε are spectrally stable or unstable with the same
number of unstable eigenvalues as the stationary solutions φδ of theorem 2.2 for ε = 0.

Remark 2.7. If m� = 2λ for an odd m, the solution vε(t) is uniquely continued in ε by
theorem 2.4. However, stability of the solution vε(t) may be different from stability of the
solution φδ of theorem 2.2 due to bifurcations of Floquet multipliers µ near the point µ = −1.

3. Continuations of stationary and periodic multi-peak solutions

We shall prove theorems 2.2 and 2.4 by using the same analytical technique based on the implicit
function theorem. We will use the explicit information about eigenvalues of the linearized
operators associated with non-trivial solutions of the differential lattice equation (2.5) in the
anti-continuum limit δ = ε = 0. To develop our analysis, we represent the periodic functions
D(t) and v(t) by the Fourier series

D(t) =
∑
m∈Z

Dmeim�t , v(t) =
∑
m∈Z

Vmeim�t . (3.1)

We will use vector notation D for {Dm}m∈Z and V for {Vm}m∈Z. If D(t) is real-valued and has
zero mean, then D0 = 0 and D−m = D̄m for all m ∈ Z+. If D(t) is a T -periodic function in
Hs([0, T ]) for any s � 0, then D ∈ l2

s (Z). Components of the vector Vm for a fixed m ∈ Z,
denoted as Vm,n for n ∈ Z, satisfy the lattice equations

(λ − m�) Vm,n = Fm,n, ∀(m, n) ∈ Z
2, (3.2)

where

Fm,n =
∑
m1∈Z

∑
m2∈Z

Vm1,nV̄−m2,nVm−m1−m2,n + δ�Vm,n + ε
∑
m1∈Z

Dm1�Vm−m1,n. (3.3)

Let us consider the vector space Xs,p = l2
s (Z, l2

p(Z)) for the solution V of the lattice
problem (3.2) with the norm

‖V‖2
Xs,p

=
∑
m∈Z

(1 + m2)s‖Vm‖2
l2
p

=
∑
m∈Z

∑
n∈Z

(1 + m2)s(1 + n2)p|Vm,n|2. (3.4)
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It is obvious that the vector space V ∈ Xs,p is equivalent to the function space of
T -periodic vector-valued functions v(t) in Hs([0, T ], l2

p(Z)) in the sense that C−‖V‖Xs,p
�

‖v(t)‖Hs([0,T ],l2
p(Z)) � C+‖V‖Xs,p

for some 0 < C− � C+ < ∞.

Lemma 3.1. Assume that D ∈ l2
s (Z) for all s > 1

2 . The vector field F of the lattice equations
(3.2) maps the vector space Xs,p to itself for any fixed s > 1

2 and p � 0.

Proof. Since � is a bounded operator, we have � : l2
p(Z) �→ l2

p(Z) for any p � 0. Let N(v)

be defined by the elements [N(v)]n = |vn|2vn for n ∈ Z. In the discrete space, there exists
C > 0 such that

‖N(v)‖2
l2
p

� ‖v‖4
l∞‖v‖2

l2
p

� C4‖v‖6
l2
p
, ∀p � 0.

Therefore, N : l2
p(Z) �→ l2

p(Z) for any p � 0. Let (U � V) be the vector for the convolution
sum defined by the elements (U�V)m = ∑

m1∈Z
Um1Vm−m1 , ∀m ∈ Z. Since l2

s forms a Banach
algebra with respect to the convolution sum for any s > 1

2 , there exists C > 0 such that

∀U, V ∈ l2
s (Z) : ‖U � V‖l2

s
� C‖U‖l2

s
‖V‖l2

s
, ∀s > 1

2 .

Since the norm (3.4) for vector space Xs,p is separable on m ∈ Z and n ∈ Z and D ∈ l2
s (Z)

for all s > 1
2 , each term of the vector field F in (3.3) maps an element of Xs,p to an

element of Xs,p. �

Remark 3.2. The left-hand side of the lattice system (3.2) maps a vector space Xs+1,p to Xs,p

for any s ∈ R, p � 0.

If ε = 0, the lattice system (3.2) is reduced to the difference equation (2.6) for special
solutions in the form

Vm,n = δm,0φn, ∀(m, n) ∈ Z
2, (3.5)

where δm,0 is the Kronecker symbol (δm,0 = 0 for any m �= 0 and δ0,0 = 1). Using lemma 3.1,
one can immediately prove theorem 2.2. We add this proof for consistence of presentation,
although it is merely a remake of the original proof in [MA94].

Proof of theorem 2.2. We first prove that all solutions of the difference equation (2.6) with
φn0 ∈ R\{0} for any fixed n0 ∈ Z and lim|n|→∞ φn = 0 are real-valued for δ �= 0. Indeed, if
φ solves the difference equation (2.6) for δ �= 0, then Jn = Jn−1, ∀n ∈ Z, where

Jn = φ̄nφn+1 − φnφ̄n+1.

Because (2.6) is a symmetric second-order difference map for δ �= 0, if φ �= 0, there exists
at most one consequent node, say n1 ∈ Z, with φn1 = 0. In this case, φn1+1 = −φn1−1 �= 0.
If lim|n|→∞ φn = 0 or if there exists n1 ∈ Z such that φn1 = 0, then Jn = 0 for all n ∈ Z.
If φn, φn+1 �= 0 for any n ∈ Z, then 2 arg(φn+1) = 2 arg(φn) mod(2π). On the other hand, if
there exists n1 such that φn1 = 0, then 2 arg(φn1+1) = 2 arg(φn1−1) mod(2π). In both cases, if
φn0 ∈ R\{0} for at least one n0 ∈ Z, then φn ∈ R for any n ∈ Z.

By lemma 3.1, the vector field of the difference equation (2.6) maps l2
p(Z) to l2

p(Z) for
any p � 0. We consider now the linear matrix operator L+ defined by

(L+u)n = (
λ − 3φ2

n

)
un − δ�un, ∀n ∈ Z, (3.6)

which is the Jacobian of the difference equation (2.6) at the real-valued solution φ with the
perturbation u. It is clear that (i) if φ ∈ l2

p(Z) for any p � 0, then L+ : l2
p(Z) → l2

p(Z), (ii) L+

is analytic with respect to δ, and (iii) if φ = φ0 is a compact solution (2.7) for δ = 0, then
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Ker(L+) = ∅ for δ = 0. Therefore, L+ is continuously invertible near φ = φ0 and δ = 0 in
l2
p(Z) × R for any p � 0. By the implicit function theorem, there exists a unique solution φδ

in l2
p(Z) for sufficiently small δ, such that φδ → φ0 as δ → 0. Moreover, the dependence φδ

is real analytic in δ.
In the discrete space, convergence in l2

p(Z) for any p � 0 implies convergence in l∞(Z).
Therefore, the distance |(φδ)n0 − (φ0)n0 | is small and, if n0 /∈ U0, then (φδ)n0 �= 0 for
sufficiently small δ. �

Remark 3.3. Consider another linear matrix operator L− defined by

(L−w)n = (
λ − φ2

n

)
wn − δ�wn, ∀n ∈ Z, (3.7)

which corresponds to the linearization of the difference equation (2.6) at the real-valued solution
φ with respect to the purely imaginary perturbation iw. If φ = φ0 is a compact solution (2.7)
for δ = 0, then L− has a k-dimensional kernel at δ = 0, where k = dim(U+) + dim(U−).
The kernel of L− introduces a technical obstacle on a continuation of the real-valued solution
φ0 to a complex-valued solution φδ . However, all localized solutions φδ are real-valued if
(φδ)n0 ∈ R\{0} for a n0 ∈ Z, such that operator L− need not be considered in the proof of
theorem 2.2.

Lemma 3.4. Let m be the number of sign-differences in the sets U+ ∪ U−. There exists a
δ1 > 0 in 0 < δ1 < δ0, such that for any 0 < δ < δ1 the operator L− has m small negative
eigenvalues, p = k − 1 − m small positive eigenvalues, and a simple zero eigenvalue, all of
which belong to an interval (−b, b), where b > 0 for δ �= 0 and b → 0 as δ → 0.

Proof. If φ ∈ l2
p(Z) for any p � 0, then L− : l2

p(Z) → l2
p(Z). In addition, L− is analytic with

respect to δ. The simple zero eigenvalue corresponds to the eigenvector φδ in the kernel of L−.
Since L−w = 0 is a linear second-order difference equation for δ �= 0, it has two fundamental
solutions. Since the solution w = φδ is decaying as |n| → ∞, the linearly independent
solution w is growing as |n| → ∞. Therefore, the zero eigenvalue is simple for any δ �= 0. By
the discrete Sturm–Liouville theorem [LL92], the number m of small negative eigenvalues of
L− equals the number of times the solution φδ changes sign on n ∈ Z. It follows by diffusivity
smoothing in lemma 2.3 of [PKF05a] that the number of sign changes of φδ is continuous in
δ as δ → 0, such that it is equal to the number of sign-differences in the sets U+ ∪ U−. The
other p = k − 1 − m small eigenvalues of L− are positive. Existence of an interval [−b, b]
with b > 0 for δ �= 0 and b → 0 as δ → 0 follows by theorem 4.10 in [K76] for semi-simple
isolated eigenvalues of self-adjoint operators. �

At ε = 0, consider the spectrum of the linearization operator associated with the lattice
equations (3.2) at the real-valued stationary solution (3.5). Assuming a decomposition

Vm,n = δm,0φn + Um,n + iWm,n, ∀(m, n) ∈ Z
2, (3.8)

where elements Un,m and Wn,m are real-valued, we derive the linearized operator (L+, L−)

acting on (U, W):

(L+U)m,n = (
λ − m� − 2φ2

n

)
Um,n − φ2

nU−m,n − δ�Um,n, ∀(m, n) ∈ Z
2,

(L−W)m,n = (
λ − m� − 2φ2

n

)
Wm,n + φ2

nW−m,n − δ�Wm,n, ∀(m, n) ∈ Z
2.

It is clear that L±|m=0 = L±, where Ker(L+) = ∅ for sufficiently small 0 � δ < δ0 (see
proof of theorem 2.2) and Ker(L−) = {φδ} for 0 < δ < δ1 (see proof of lemma 3.4). The mth
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component of the vectors U and W is coupled with the −mth component, such that one can
introduce matrix operators L

(m)
± for any m ∈ N with the elements[

L
(m)
±

(
um

u−m

)]
n

=
(
(λ − m� − 2φ2

n)um,n − δ�um,n ∓φ2
nu−m,n

∓φ2
num,n (λ + m� − 2φ2

n)u−m,n − δ�u−m,n

)
,

where n ∈ Z.

Lemma 3.5. Let m� �= λ for all m ∈ N. There exists a δ2 > 0 in 0 < δ2 < δ0, such that
for any 0 < δ < δ2, the direct product of operators L

(m)
± on m ∈ N has no eigenvalues in an

interval (−b0, b0) for some b0 > 0.

Proof. If φ = φ0 is a compact solution (2.7) for δ = 0, then L
(m)
± for any fixed m ∈ N

has eigenvalues −λ +
√

λ2 + m2�2 and −λ −
√

λ2 + m2�2 of multiplicity k and eigenvalues
λ−m� and λ+m� of infinite multiplicity. All these eigenvalues are bounded away from zero
if m� �= λ for all m ∈ N. If φ ∈ l2

p(Z) for any p � 0, then L
(m)
± : l2

p(Z, C
2) → l2

p(Z, C
2).

Moreover, L
(m)
± is analytic with respect to δ. The assertion of the lemma follows by

theorem 4.10 in [K76], where eigenvalues of infinite multiplicities for δ = 0 transform for
δ �= 0 into spectral bands of small width and a set of isolated eigenvalues. �

Incorporating lemmas 3.1, 3.4 and 3.5, we prove theorem 2.4.

Proof of theorem 2.4. The vector field F of the lattice equations (3.2) is closed in V ∈ Xs,p for
any s > 1

2 and p � 0 by lemma 3.1 and it is analytic in ε ∈ R. The Jacobian operator J of the
lattice equations (3.2) at the solution (3.5) with φ ∈ l2

p(Z) for any p ∈ R maps Xs+1,p ⊂ Xs,p

to Xs,p and has a one-dimensional kernel for ε = 0 and 0 < δ < min(δ0, δ1, δ2) by lemmas
3.4 and 3.5. Due to the symmetry of the lattice equations (3.2) with respect to the gauge
transformation V �→ eiθV, ∀θ ∈ R, the Jacobian operator J for any ε > 0 inherits a one-
dimensional kernel. Due to the same reason, the nonlinear operator F(V) is orthogonal to
the kernel of J . To define uniquely a projection to the one-dimensional kernel of J , we add
a condition (v)n0(0) ∈ R\{0} for a fixed n0 ∈ Z on the solution of the differential lattice
equation (2.5), which is equivalent to the following constraint on the solution V of the lattice
equations (3.2):

G(V) = Im
∑
m∈Z

Vm,n0 = 0. (3.9)

The constraint (3.9) is satisfied at the solution (3.5) for any δ ∈ R. Let us apply the Lyapunov–
Schmidt decomposition of V ∈ Xs,p with respect to the one-dimensional kernel of J :

Vm,n = δm,0φn + iθδm,0φn + Um,n + iWm,n, ∀(m, n) ∈ Z
2, (3.10)

where (U, W) lies in the orthogonal complement of the kernel of the Jacobian operator J . The
value of θ is defined uniquely from the vector W by the constraint (3.9) resulting in the relation

θφn0 = −
∑
m∈Z

Wm,n0 , (3.11)

where φn0 �= 0 for a n0 ∈ U+ ∪ U− by theorem 2.2 for sufficiently small δ > 0. Let
P be the projection to the orthogonal complement of the kernel of J . By lemma 3.5, the
projected Jacobian operator PJP is continuously invertible near (U, W) = (0, 0) and ε = 0
in Xs,p × Xs,p × R for 0 < δ < min(δ0, δ1, δ2) and any s > 1

2 and p � 0. By the implicit
function theorem, there exists a unique solution (Uε, Wε) in vector space Xs,p × Xs,p such
that (Uε, Wε) → (0, 0) as ε → 0. Moreover, the dependence (Uε, Wε) is real analytic in ε.
Therefore, θε defined by (3.11) is real analytic in ε and θ → 0 as ε → 0. �
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Remark 3.6.

(i) When k � 2, dimKer(L−) = k > 1 at δ = 0 such that b0 → 0 as δ → 0 in the last
assertion of lemma 3.4. Therefore, the Jacobian operator of the lattice system (3.2) is not
invertible for δ = 0 and k > 1.

(ii) When the resonance condition m� = λ is satisfied for a particular m = m0 ∈ Z+, the
spectrum of L

(m)
± is not bounded away from zero. Again, the Jacobian operator of the

lattice system (3.2) is not invertible if the resonance occurs at any m = m0.

In both cases, theorem 2.4 may be invalid and a separate study is needed.

Using results on the linear operators L+ and L−, we finally prove theorem 2.6.

Proof of theorem 2.6. Let vε(t) be a periodic solution of theorem 2.4 for sufficiently small
ε > 0 and δ > 0. In order to investigate spectral stability of periodic solutions in the differential
lattice equation (2.5), one has to study the linearized differential lattice equation

iẇn +
(
λ − 2|vn(t)|2

)
wn − v2

n(t)w̄n = δ�wn + εD(t)�wn. (3.12)

We recall that D(t) and v(t) are periodic with the same period T . By the Floquet theorem,
all solutions of the linearized equation (3.12) are given by the vectors w(t) such that
w(t + T ) = µw(t) and w ∈ L2([0, T ], l2(Z)), where µ ∈ C is the Floquet multiplier. At
ε = 0, we have v(t) = φ and w(t) = ψeγ t with time-independent vectors φ and ψ such that
µ = eγ T . If we further decompose ψ = u + iw with (u, w) ∈ l2(Z, C

2), then the linear system
for ψ reduces to the eigenvalue problem

L+u = γ w, L−w = −γ u, (3.13)

where operators L+ and L− are given by (3.6) and (3.7). Let δ �= 0 be sufficiently small.
By theorem 3.6 in [PKF05a], the spectral problem (3.13) has a double zero eigenvalue γ , a
finite number of semi-simple purely imaginary or real eigenvalues γ near the points γ = 0
and γ = ±iλ and two bands of the continuous spectrum on the imaginary axis near points
γ = ±iλ. Therefore, the linear problem (3.12) for ε = 0 has a double unit multiplier µ, a
finite number of semi-simple multipliers µ on the unit circle or on the real positive axis near
the points µ = 1 and µ = e±iλT , and two bands of the continuous spectrum on the unit circle
near points µ = e±iλT . If m� �= 2λ for all m ∈ N, it follows that λT �= πm and all spectral
data of the linear problem (3.12) are bounded away of the bifurcation points µ = ±1, except
for the double unit multiplier. However, the double unit multiplier is structurally stable due
to the gauge invariance of the linear equation (3.12). In addition, semi-simple eigenvalues
on the unit circle are structurally stable in the linearized symplectic equations such as (3.12),
while the continuous spectrum is preserved under deformations of v(t) ∈ Hs([0, T ], l2

p(Z))

for s > 1
2 and p � 0 by Weyl’s theorem. �

Remark 3.7. Theorem 3.6 of [PKF05a] states that the localized mode φ is spectrally stable
in the linear problem (3.13) for sufficiently small δ �= 0 if and only if m = k − 1, where m is
defined by lemma 3.4 and k is defined by remark 2.3. If m < k − 1, the stationary solution is
unstable with exactly k −1−m unstable (real or complex) eigenvalues γ in the linear problem
(3.13). By theorem 2.6, the same conclusion extends to the periodic solutions of the linear
equation (3.12) for sufficiently small ε if m� �= 2λ for all m ∈ N but the role of eigenvalues
γ is taken by Floquet multipliers µ = eγT .
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4. Extensions to higher dimensional lattices

We shall reformulate theorems 2.2 and 2.4 for time-periodic localized solutions of the discrete
NLS equation in higher spatial dimensions. The main difference is that localized solutions
in two and three dimensions can be complex valued and persistence of these solutions from
the anti-continuum limit depends on the non-degeneracy assumption on the kernel of a finite-
dimensional reduction. The method of Lyapunov–Schmidt reductions near the anti-continuum
limit was developed for localized solutions in [PKF05b] and [LPK08] in two and three
dimensions, respectively.

The existence of single-peak localized modes in higher dimensions has been shown by
variational methods in [W99, M05, P06]. Although these methods work equally well near
and far from the anti-continuum limit, they provide less information on the solution than the
methods based on the implicit function theorem. On the other hand, the interpretation of the
discrete NLS equation as a symplectic map in [BBJ00] does not seem applicable in the space
of higher dimensions.

We shall consider the main equation in the form

iv̇n +
(
λ − |vn|2

)
vn = δ�vn + εD(t)�vn, ∀n ∈ Z

d , (4.1)

where vn(t) : R �→ C, �un = ∑d
j=1(un+ej

+ un−ej
) − 2dun for unit vectors (e1, e2, . . . , ed) ∈

R
d , and we assume that λ > 0. Stationary solutions satisfy the system of algebraic equations

ε = 0 :
(
λ − |φn|2

)
φn = δ�φn, n ∈ Z

d . (4.2)

To characterize solutions of the stationary problem (4.2) for small values of δ, we shall
repeat arguments of the method of Lyapunov–Schmidt reductions in space X = l2

p(Zd) for
p � 0 [LPK08]. Let S be a finite subset of Z

d with N = dim(S) and denote S⊥ = Z
d \ S.

The stationary problem (4.2) with δ = 0 has solutions φ0 with the components

(φ0)n = 0, ∀n ∈ S⊥; (φ0)n =
√

λeiψn, ∀n ∈ S, (4.3)

where ψn ∈ T([0, 2π ]). Fix λ > 0 and define the function F : X × R → X by

Fn(u, δ) = (λ − |un|2)un − δ(�u)n, ∀u ∈ X, ∀δ ∈ R. (4.4)

The function F is a polynomial in u, δ, and thus real analytic in X × R. Let DuF(u, δ) denote
the Fréchet derivative of F(u, δ) with respect to u. If we identify C with R

2 by taking real
and imaginary parts such that un = ur

n + iui
n, we can then define the vector field in the form

Fn = F r
n + iF i

n.

Proposition 4.1. The spectrum of DuF(φ0, 0), where φ0 is given by (4.3), consists of
eigenvalues 0, −2λ, both of multiplicity N , and an eigenvalue λ, of (doubly) infinite multiplicity.
The eigenvectors solve the linear systems

DuF(φ0, 0)er (k) = λer (k), DuF(φ0, 0)ei (k) = λei (k), ∀k ∈ S⊥ (4.5)

and

DuF(φ0, 0)r(k, ψk) = −2λr(k, ψk), DuF(φ0, 0)θ(k, ψk) = 0, ∀k ∈ S, (4.6)

with

er
n(k) = δn,k

[
1
0

]
, ei

n(k) = δn,k

[
0
1

]
,

rn(k, ψk) = δn,k

[
cos ψk

sin ψk

]
, θn(k, ψk) = δn,k

[ − sin ψk

cos ψk

]
.
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Proof. For any vectors u, v ∈ X, we compute

(DuF(u, δ)v)n = λvn − 2|un|2vn − u2
nv̄n − δ(�v)n. (4.7)

Therefore, we have

(DuF(φ0, 0)v)n = λvn, ∀n ∈ S⊥;
(DuF(φ0, 0)v)n = −λ(vn + ei2ψn v̄n), ∀n ∈ S. (4.8)

Equations (4.5)–(4.6) are now established by direct computations. �
We note that the set of vectors {er (k), ei (k)}k∈S⊥ and {r(k, ψk), θ(k, ψk)}k∈S provide an

orthonormal basis in X. Let Z0(ψ) = Span ({θ(k, ψk)}k∈S) be the kernel of DuF(φ0, 0) and
Z(ψ) = Span

({er (k), ei (k)}k∈S⊥; {r(k, ψk)}k∈S

)
be the orthogonal complement of Z0(ψ). By

proposition 4.1, Z0(ψ) is in the tangent space to the N -torus of the limiting solution (4.3), while
Z(ψ) is orthogonal to the N -torus. This geometry suggests that we use a mixed coordinate
system in X, i.e. polar coordinates in each of the planes spanned by {r(k, ψk), θ(k, ψk)}k∈S

and rectangular coordinates in all other planes.
Let un = ur

n + iui
n, ∀n ∈ Z

d and define new coordinates by

ur
n = qn, ui

n = pn, ∀n ∈ S⊥;
ur

n = rn cos θn, ui
n = rn sin θn, ∀n ∈ S. (4.9)

Denoting the old and new coordinates of a point by x, y respectively, the correspondence (4.9)
defines a map x = G(y) from R

N
+ × T

N × P0X � y to X � x, where P0 is the projection onto
the span of {er (k), ei (k)}k∈S⊥ . The map G is real analytic in R

N
+ × T

N × P0X.

Remark 4.2. Since we are interested in solving F(u, δ) = 0 for u near φ0, we expect that rn

is close to
√

λ, i.e. away from the origin. We therefore expect solutions in the domain of G.

Proposition 4.3. Equation F(u, δ) = 0, ∀u ∈ X, is equivalent to

F r
n (u, δ) = 0, F i

n(u, δ) = 0, ∀n ∈ S⊥, (4.10)

cos θnF
r
n (u, δ) + sin θnF

i
n(u, δ) = 0, ∀n ∈ S, (4.11)

−sin θnF
r
n (u, δ) + cos θnF

i
n(u, δ) = 0, ∀n ∈ S, (4.12)

where u is expressed in the coordinates {qn, pn}n∈S⊥ and {rn, θn}n∈S .

Proof. We view the function F(·, δ) : X → X as a vector field in X by mapping the basis
vectors {er (n), ei (n)}n∈Zd to the respective basis vectors ∂/∂ur

n, ∂/∂ui
n of the tangent space at

each point in X. Then,

F =
∑
n∈Zd

(
F r

n

∂

∂ur
n

+ F i
n

∂

∂ui
n

)
, (4.13)

and since
∂

∂ur
n

= ∂

∂qn

,
∂

∂ui
n

= ∂

∂pn

, ∀n ∈ S⊥,

∂

∂ur
n

= cos θn

∂

∂rn

− sin θn

rn

∂

∂θn

,
∂

∂ui
n

= sin θn

∂

∂rn

+
cos θn

rn

∂

∂θn

, ∀n ∈ S,

expression (4.13) becomes

F =
∑
n∈S⊥

(
F r

n

∂

∂qn

+ F i
n

∂

∂pn

)
+

∑
n∈S

(
cos θnF

r
n + sin θnF

i
n

) ∂

∂rn

+
∑
n∈S

1

rn

(−sin θnF
r
n + cos θnF

i
n

) ∂

∂θn

.



1276 P Panayotaros and D Pelinovsky

Therefore, the equation F(u, δ) = 0, ∀u ∈ X, is equivalent to the vanishing the coefficients of
{∂qn

, ∂pn
}n∈S⊥ and {∂rn

, ∂θn
}n∈S . �

To solve system (4.10)–(4.12), we group the variables {qn, pn}n∈S⊥ and {rn}n∈S into a radial
variable z ∈ Z = P0X × R

N
+ and the variables {θn}n∈S into an angular variable θ ∈ Z) = T

N .
Then, the left-hand side of system (4.10)–(4.11) defines a function fr : Z × T

N × R → Z.
Similarly, the left-hand side of system (4.12) defines a function fθ : Z × T

N × R → R
N .

Consider a point z0 ∈ Z, such that qn(z0) = pn(z0) = 0, ∀n ∈ S⊥ and rn(z0) = √
λ, ∀n ∈ S.

Since F(φ0, 0) = 0, we have

fr (z0, θ, 0) = 0, fθ (z0, θ, 0) = 0, ∀θ ∈ T
N. (4.14)

We seek a function z = r(δ), θ = θ(δ) satisfying the system

fr (z, θ, δ) = 0, fθ (z, θ, δ) = 0. (4.15)

We show that for any θ ∈ T
N , and sufficiently small δ, the first equation has a unique solution

z = z(θ, δ). Then, the second equation is reduced to finding θ ∈ T
N satisfying

fθ (z(θ, δ), θ, δ) = 0. (4.16)

Lemma 4.4. Fix θ ∈ T
N . There exists a δ0 > 0, independent of θ, such that for every δ in

0 � δ < δ0, there exists a unique function z = z(θ, δ) ∈ Z satisfying fr (z(θ, δ), θ, δ) = 0.
The dependence of z(θ, δ) on θ and δ is real analytic and z(θ, 0) = z0, ∀θ ∈ T

N .

Proof. Fix θ ∈ T
N . Since fr (z0, θ, 0) = 0, we want to apply the implicit function theorem

to find solutions for small δ. Let P : X → Z be the orthogonal projection onto Z. We then
find that

Dzfr (z0, θ, 0) = PDuF(φ0, 0)P . (4.17)

By proposition 4.1, the spectrum of Dzfr (z0, θ, 0) consists of an eigenvalue λ of infinite
multiplicity and an eigenvalue −2λ of multiplicity N , which are independent of θ. Therefore,
this operator has a bounded inverse. The function fr (z, θ, δ) is also real analytic in Z × R and
by the real analytic implicit function theorem [Z], there exists δ0 that is independent of θ such
that, if |δ| < δ0, then there exists a unique function z(θ, δ) that satisfies fr (z(θ, δ), θ, δ) = 0
with z(θ, 0) = z0 and is real analytic in δ. The argument clearly works for any θ ∈ T

N .
Instead of applying the implicit function theorem for each fixed θ, i.e. treating only δ as

the parameter, we can also choose any θ0 ∈ T
N and let the parameter space consist of (θ, δ)

in a neighbourhood of (θ0, 0). The solutions for fr (z, θ, δ) are also real analytic in θ near
θ0 and coincide with the ones obtained by the above argument by uniqueness. As a result,
the existence of solutions is established for 0 � δ < δ0, where δ0 is independent of θ in the
torus T

N . �

Remark 4.5. By the continuity of z(θ, δ) on δ, and the property z(θ, 0) = z0 we see that the
components rn of the vector z(θ, δ) are close to

√
λ for sufficiently small δ. In particular, these

components remain positive. By the continuity of z(θ, δ) in θ, and compactness, we can find
δ0 > 0 for which z(θ, δ) ∈ P0X × R

N
+ , i.e. the domain of the change of coordinates is T

N for
0 � δ < δ0.

With δ0 and z(θ, δ), as in lemma 4.4, define the function g(θ, δ) by

g(θ, δ) = fθ (z(θ, δ), θ, δ), ∀θ ∈ T
N, |δ| < δ0. (4.18)

The function g(θ, δ) can be extended by periodicity in each direction to θ ∈ R
N . Also, let

dN = ∑N
j=1 ej ∈ R

N . If θ0 ∈ R
N is a root of g(θ, δ), then θ0 + sdN is also a root of g(θ, δ),
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∀s ∈ R. This follows from the fact that F(u0, δ) = 0 implies F(eiχu0, δ) = 0, ∀χ ∈ R. Thus,
any root θ0 ∈ T

N of g(θ, δ) belongs to a circle S1(θ0) ⊂ T
N of roots of g(θ, δ). Consequently,

if θ0 is a solution of g(θ, δ) = 0, then the derivative Dθg(θ0, δ) has an eigenvalue λ1 = 0 with
corresponding eigenvector dN .

Definition 4.6. A solution θ0 ∈ T
N of g(θ, δ) = 0 is non-degenerate if the null eigenvalue of

Dθg(θ0, δ) has geometric multiplicity one.

By lemma 4.4, there exists δ0 > 0, for which we can use the Taylor series expansions

z(θ, δ) =
∞∑

k=0

δkzk(θ), ∀|δ| < δ0. (4.19)

Recall that all components rn of the vector z0(θ) are equal to
√

λ. Also, by the real analyticity
of fθ (z, θ, δ) in z and δ, we can write

g(θ, δ) =
∞∑

k=1

δkgk(θ), ∀|δ| < δ0. (4.20)

If we let

zm(θ, δ) =
m∑

k=0

δkzk(θ), gm(θ, δ) =
m∑

k=1

δkgk(θ), (4.21)

then the finite sums zm(θ, δ) and gm(θ, δ) are real analytic on T
N × R. The remarks above

about the equivariance of g(θ, δ) under the translation θ0 �→ θ0 + sdN , ∀s ∈ R and θ0 ∈ T
d

also apply to the derivatives of g(θ, δ) in δ, and therefore to the function gk(θ). We thus solve
the equation fr (z, θ, δ) = 0 by zm(θ, δ) up to some order m � 1 in δ, compute gm(θ, δ), and
solve the equation gm(θ, δ) = 0.

Definition 4.7. A solution θ0 ∈ T
N of gm(θ, δ) = 0 is m-non-degenerate if Dθgm(θ0, δ) has

one eigenvalue λ1 = 0 of geometric multiplicity one and all remaining eigenvalues λ2, . . . , λN

satisfy |λj | > Cm|δ|m for some Cm > 0.

Remark 4.8. By the fact that g(θ, 0) = 0, ∀θ ∈ T
N , we have that any eigenvalue λj of

Dθgm(θ, δ), evaluated at a solution θ of gm(θ, δ) = 0, m � 1, must satisfy |λj | < C|δ| for
some C > 0. This follows from the fact that Dθgm(θ, δ) depends continuously on δ and hence
its eigenvalues also depend continuously on δ [K76].

Using definitions 4.6 and 4.7, we formulate analogue of theorems 2.2 and 2.4.

Theorem 4.9. Let θ = θ0 be an m-non-degenerate solution of gm(θ, δ) = 0 for some m � 1.
Then, there exists δ0 > 0 such that the difference equation (4.2) has a unique, modulo to the
gauge translation, solution φδ ∈ l2

p(Zd) for any fixed p � 0, such that

∀0 � δ < δ0 : ‖φδ − φ0‖l2
p

� Cδ, (4.22)

for some C > 0. The solution φδ is real analytic in δ.

Proof. It follows from the analyticity of g(θ, δ) and the implicit function theorem along the
directions that are orthogonal to dN that, if θ0 is a root of gm(θ, δ), then there exists a θ̃0

satisfying g(θ̃0, δ) = 0, such that ‖θ̃0 − θ0|| < C|δ|m+1. Also, Dθg(θ̃0, δ) has one eigenvalue
λ1 = 0, of geometric multiplicity one, and the remaining eigenvalues λ2, . . . , λN satisfying
|λj | > Cm|δ|m for some Cm > 0. Let z̃0 = z(θ̃0, δ). Then ũ0 = (z̃0, θ̃0) satisfies F(ũ0, δ) = 0.
Moreover, DuF(ũ0, δ) has one eigenvalue λ1 = 0, N − 1 eigenvalues λ2, . . . , λN that satisfy
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C−|δ|m < |λj | < C+|δ|, for some C−, C+ > 0, and N eigenvalues λ̃1, . . . , λ̃N that belong to
the interval (−2λ−C1δ, −2λ+C1δ) for some C1 > 0. The rest of the spectrum of DuF(ũ0, δ)

belongs to the interval (λ − C2δ, λ + C2δ) for some C2 > 0. The statement of the theorem
follows by the implicit function theorem. �

Theorem 4.10. Let φδ be defined by theorem 4.9 and 0 < δ < δ0. Assume that D(t) is a
real-valued T -periodic function in Hs([0, T ]) for any s > 1

2 . Fix � = 2π
T

such that λ �= m�

for all m ∈ N. Then, there exist ε0 > 0 which depends on δ and minm∈N |λ − m�| such that
the differential lattice equation (4.1) has a unique, modulo to the gauge translation, solution
vε(t) in Xs,p = Hs([0, T ], l2

p(Zd)) for any fixed s > 1
2 and p � 0, such that vε(t +T ) = vε(t)

on t ∈ R and

∀0 � ε < ε0 : ‖vε(t) − φδ‖Xs,p
� Cε, (4.23)

for some C > 0. The solution vε(t) is real analytic in ε.

Proof. The proof is similar to the proof of theorem 2.4 under the non-degeneracy assumption
on θ0 and is left for reader’s exercise. �

Example 4.11. LetS be a closed discrete contour in Z
d that consists of nodes, each is connected

to two nearest neighbours. Let the index j = 1, . . . , N enumerate nodes nj along the contour S.
Using the lowest-order solution z0(θ), where all components rn are equal to

√
λ, we compute

(g1(θ))nj
=

√
λ

(
sin(θnj

− θnj+1) + sin(θnj
− θnj−1)

)
, ∀nj ∈ S, (4.24)

where the periodic boundary conditions θnN+1 = θ1 and θ0 = θN are used. Particular examples
of vortex solutions and contours S can be found in [PKF05b] for d = 2 and [LPK08] for
d = 3, where the non-degeneracy assumptions are shown to be satisfied for every vortex
configuration.

Remark 4.12. With exactly the same technique as in the proof of theorem 2.6, spectral stability
of time-periodic solutions vε(t) for sufficiently small ε > 0 is inherited from spectral stability
of stationary solutions φδ for ε = 0, under the additional condition m� �= 2λ for all m ∈ N.
Examples in [PKF05b] show, however, that no simple correlation exists between small positive
and negative eigenvalues of the linear operator DuF(u, δ) and unstable eigenvalues of the
spectral stability problem (3.13) for d � 2.
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