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 920 D. J. ROSE [November

 The purpose of this note is to offer a simple inductive (and constructive) proof of the following
 fundamental theorem of numerical linear algebra.

 THEOREM. For any nonsingular n x n matrix, A, there exists an n x n permutation matrix P such

 that

 PA = LU,

 where L is lower triangular with ones on the diagonal and U is upper triangular with nonzero
 diagonal elements.

 Proofs of the "PA = LU" theorem are offered by relatively few authors of numerical analysis
 texts. Wendroff [3, pp. 127-129] presents a complete proof which is similar in spirit to Wilkinson's
 sketch in [4, pp. 206-207]. Stewart [2, Chapt. 3, ?2] gives a proof as part of his general discussion of
 Gaussian elimination while Forsythe and Moler [1, Chapt. 16, pp. 63-64] imbed a proof in their
 algorithm and subsequent discussion.

 Suppose A is written as

 ~a rl
 (4) A=

 c Bg

 where a,- 0 is scalar, c is (n - 1) x 1, r is 1 x (n - 1) and B is (n - 1) x (n - 1). Most authors view
 Gaussian elimination as effecting elementary row operations on A and its transforms until one
 obtains an upper triangular matrix. For example, the first step takes A'= A"' into A(2) by

 a r

 L1A"'~= [l = A(2)

 O (2) .

 where

 Ll = B(2) B - crla.
 - cla 1

 One then continues (formally) finding elementary lower triangular matrices ([2], p. 115), Li such that

 (5) LiLi-I... LIA = A" (aFl+)

 has zero below the diagonal in its first i columns. A (n) is then upper triangular, L = L 1-' L 2 ' L.n.. l
 is lower triangular so A = L U. The hitch in this formal discussion is that possibly some a = 0 so, in
 general, (5) must be replaced by an expression with permutation matrices sandwiched in between the
 Li (see [3, p. 128] or [2, p. 124]); this causes some untidyness. An alternative formal derivation of
 A = LU proceeds from (4) to

 (6) A =[ca ] [ B"1

 and supposing B(2) = L2 U2 to

 A= [ LU.

 cl L2_ 0 r 2r
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 1975] MATHEMATICAL NOTES 921

 There is nothing "existential" about this argument; one would begin to factor B'2' exactly as one
 began to factor A itself.

 Proof of Theorem. The proof of the theorem is shorter than its motivation so let us begin. The
 nonsingular matrix A must have a nonzero in its first column; hence there exists a permutation
 matrix P1 such that

 ~a r
 P1A= J, a70,

 c B

 as in (4). Then as in (6)

 P~~A = [cja ~~~~1 [: ;~(2)]
 clca I.-& 0 B

 B'2'= B - cr/a. Now B'2' is nonsingular so by induction (the 1 x 1 case is clear) there exists an
 (n - 1) x (n - 1) permutation matrix P2 such that P2B'2) = L2U2. Thus

 I[ 0 Fa O a r

 = cia TL 0 L2 U2j Lca PT L2lLO u21
 and

 - 1 0~- ~a r~ -I O0
 (7) P2P1A= K where P2[ 1

 ,P2cla L2 ?J U2_ 0 P2_

 Hence PA = LU as in the theorem.

 If algorithms can contain proofs, then perhaps proofs can also contain algorithms. Notice that in

 our algorithm the P2cIa expression in (7) is important. Its presence says that as we overwrite A by
 successive columns of L and rows of U, any row interchanges on the subsequent submatrices must

 in fact be done on the whole evolving matrix. (One can also avoid any physical interchanging as
 discussed in [1, Chapt. 16].) Finally, when executing our proof on any modern day computer with
 inexact arithmetic (and therefore round-off error), choose a (and subsequent "pivots") to be the
 element of largest magnitude in the column (on or below the diagonal). The proof is then called

 "Gaussian elimination with partial pivoting." We refer to [1] or [2] for more extensive discussions
 and to [4] for the classic on the subject.
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