Lección 1.7: Métodos de Galerkin y mínimos cuadrados.

Ritz =7 se trabaja en un espacio de dim < 00 En el método de Galerkin aplicamas esta idea al caso en que el operador no es simétrico (Lax-Milgram).

Motivación: H de Hillbert real, Da C H

Da = H, A : Da c H - H operador lineal y
acotado. Nota: no suponemos A sinetrico.

consideramos el problema

hallar ue Da tal que Au=f --- (1)

con fett dado. Supongamos que f ubeDa solución de (1). Entonces,

< AU0-+, v> = 0 Y v∈ H.

Consideremos el espacio finito - dimensional $E_N = Span \{ 9; \frac{1}{3} = D_A, n \in \mathbb{N} .$

Por ser hot Da solución

 $\langle AU_0-f, \Psi_j \rangle = 0$ $\forall 1 \leq j \leq n - (2)$

$$\alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Hay gre analizar:

- solvabilidad de (5)
 si hay solución, ¿ converge a llo²
 → c que pasa si llo # DA ²

Ventaja del método de Galerkin: no se asume la Simetria del operador. Se va a plantea con mayor generalidad: forma bilineal no simetrica.

caso importante: lax-Milgram:

DA = H

A continuo y H-eliptico

Definición Sea I un espacio de Bancch. Un esquema de aproximación de Galerkin es una sucesión de subespacios de dimensión finita,

 $\{V_n\}_{n\in\mathbb{N}}, V_n\subset X, \dim V_n<\infty$

tales gue: $\forall U \in X = \exists \{V_n\}_{n \in IN} \subset X =$

Nota: (a) y (b) son equivalentes a
AUEX lim dist(u, Vn) = 0
$n \rightarrow \infty$ donde dist $(u, W) = \inf \ u - w\ $ $w \in W$
WE W
V W< X subespacio
Ejercicio: probar esta equivalencia.
Lema Sea X un espacio de Barach separable. Entonces existe un esquema de Galerkin, el cual se define mediante el siguiente método
Entonces existe un esquerra de Galerkin el
cual se define mediante el siguiente metodo constructivo:
(i) Tomese malquier conjunts numerable denso en I, (uj bjen < I -
denso en X, jus gen < X.
(ii) Definate $V_n := span \{u_1,, u_n\}, n \in \mathbb{N}$
Entonces { Vinhner es un esquema de
Galerkin.
Now shoot of the state of the s
Demostración: Sea UEX Por densidad de (U; y;ein, 4670 7 N=N(E) EIN tal que
JUJEIN , TETO J N-NET EIN FUL YUE
[Un - U < € Si N≥N
T a l (l
Par per definición un & Vn. Por lo tanto
$dist(un, V_n) < \epsilon$

Dado que Vn C Vm si m>n entonces: Y E ZO 3 NEW tal que dist [u, Vn) < E YNZN. Es decir, dist(u, Vn) - 0 si n-2 Observaciones: (a) Los vectores 4,..., un no son necesariamen te linealmente indepenmentes. (b) La sucesión de espacios es monotona creciente: Vi < V2 C --- C Vn C ---(c) X = UVn (por densidad) Aproximación de Galerkin a la solución de Lax-Milgram. (H,<17) de Hhoert real $a(\cdot,\cdot)$: $H \times H \rightarrow IR$ forms bilineal sortinus y H-eliptics: $\exists \alpha, \beta>0$ tales give \vdots $[a(u,v)] \leq \alpha ||u|| ||v||$ \vdots $[a(u,u)] \geqslant \beta ||u||^2$ \vdots $[a(u,v)] \in \alpha ||u|| ||v||$ Sea lett* (funcional lineal continuo en H). (Si Da=H, A:H→H, continuo fal que $\langle Au,u\rangle \approx \beta \|u\|^2 + u \in H$, tenemos estas hipotesis con $a(u,v):=\langle Au,v\rangle$; A no es simétrico).

```
Lax-Milgram: I! USEH tal que
                                                                 \alpha(u_0, v) = l(v)
                                                                                                                                                                                                                                                                    A RE H -- (P)
     c Como aproximadas 40 2
     supongamos que H es separable. .: I un esquema de Galerkin
                          J d V_n V_1 = V_2 = ... = CV_n = ...

Subespacios de dim < \infty tales que V_n = V_n =
           Aproximación de Galerkin: problema,
(7)--- Hallar Une \nabla n tal que a(u_n v) = l(v), \forall v \in \nabla n, n \in \mathbb{N}
  Nota: el problema (7) siempre tière solución \forall n \in \mathbb{N}: (V_n, <_1 >) es un espacio de Hilbert de dim < \infty, a_n(\cdot, \cdot) := a(\cdot, \cdot)|_{V_n \times V_n} es una forma bilineal continua y V_n-elíptica \ln := 1|_{V_n} es un funcional lineal continuo en V_n. Por L_{ax}- Milgram : \exists 1 un \in V_n solución de (7).
```

c'cómo calcular un? Fijemos ne IN; supongamos dim $V_n = m \le N$. Sea $f_1, \ldots, f_m = f_m =$

```
: Un = 2 dj4; para cierbs ajs

Justituyendo,
   a\left(\sum_{j=1}^{m} a_{j} \varphi_{j}, v\right) = \lambda(v), \quad \forall v \in V_{n}
= 7 \quad \sum_{j=1}^{m} a_{j} a_{j}(\varphi_{j}, v) = \lambda(v), \quad ||
   Towardo V = Y_{i}, 1 \le i \le N:
                                        \sum_{j=1}^{\infty} a(4j,4j) a_j = \ell(4i), \forall i
   obtenemos el sistema M(i) = b
con MEIR, M_{ij}^{-} = \alpha(y_i, y_i) \forall 1 \leq i, j \leq m

M no e_i e_j e_j
                          berr, bi= l(qi), 1 < j < m
 la solución un se calcula resolviendo este
sistema. Galerkin consiste en incrementar
n para aproximar us por un.
    Convergencia: torrando V=Un E Vn, tenemos
                         B ||Un|| = a(Un, Un) = l(Un) = ||l|| || ||Un||
                                         :. | | Un| = | | l | x < 0
      La sucesión funt<sub>nem</sub> es acotada en H.
```

: J éunjfien que converge débilmente a uff: $\langle u_j, v \rangle \longrightarrow \langle u, v \rangle \quad \forall v \in H$ Así, dado VE Vm, m<AN para j>>1 suf. grande Vm < Vn- y por ende, $a(u_n, v) = l(v), j \gg 1$ Entonces, uni > u en H implica que $\alpha(u_{ij}, v) \rightarrow \alpha(u_{i}v)$ si j $\rightarrow \infty$ En efecto: por la demostración de Lax-Milaram f $A \in B(H, H)$ tal que $a(u,v) = \langle Au,v \rangle$ $\forall v \in H$. Entonces, $a(u_{1},v) = \langle Au_{1},v \rangle = \langle u_{1},A^{*}v \rangle$ <u, A*v> = < AU, v> = a (U,V) ASÍ, a(u,v) = l(v), Y ve Vm, Y MEN. :. a(u,v) = l(v) + vE U/m MEIN Dado que H = UVm obtenemos

 $a(u,v) = l(v) \quad \forall v \in H.$

```
Por unicidad de la solución de Lax-Milgram:
                  U = U_o \in H.
  un-luft De hecho: un → u en H.
Teorema (lema de cea)
Sean It de Hilbert separable y 1 Vir Incin
un esquema de Galerkin. Suponiendo que
(8) = \begin{cases} a(u_{n,v}) = l(v) & \forall v \in V_n \\ u_n \in V_n \end{cases}
y gve
(91-) u \in H
 (por ejemple, si a y l satisfacen las
hipótesis de Lax-Milgram) entonces
(10) --- \|u_n - u\| \le \alpha dist (u, V_n) \forall n \in M
Demostración Restando (8) y (9):
        a(u-un, v) = 0 Y v+ Vn < H
En particular, a(u-u_1,u_n) = 0.
```

Por lo fanto, Y VE Vn = a(u-un,u-un) = a(u-un,u-v)+a(u-un,v-un) $= \alpha(u-u_n, u-v)$ Por continuidad y H-elipticidad de al·1.): $p||u-u_n||^2 \in \alpha(u-u_n, u-u_n)$ = $\alpha(u-u_n, u-v) \in x ||u-u_n|| ||u-v||$ ASÍ, $||u-4n|| \leq \alpha \text{ inf } ||u-v||$ $= \alpha \text{ dist } (u_1 \sqrt{n}) \rightarrow 0$ $= \beta \text{ now ser esquence}$ $= \beta \text{ de Galerkin}$ Observaciones:

- (1) La estimación (10) implica que para estimar el error en la aproximación de Galerkin, es suficiente con estimar int 11u-v11
- (2) Cuando Vn SL genera usando una base de punciones lineales, por pedazos: Galerkin = metodo de elemento tinito.

Ejemph: Considerenos el problems

(11) ...
$$\begin{cases} -u'' = f, & x \in (0,1) \\ u(0) = u(1) = 0 \end{cases}$$

dade $f \in C([0,1])$. El typagio de Hilbert

H = Ho(0,1) (expagio de Stader). (Sección 3)

Esquema de fialerkin : idea natural, considerar polinomios que se anular en $x = 0$ y

 $x = 1$
 $\sqrt{n} := \text{Span} \left\{ x^{j}(1-x) : 1 \le j \le n \right\}$

Aprox- de fialerkin : $u_{1}(x) = \sum_{j=1}^{n} x^{j}(1-x)$

Forma bilined de (11) :

 $a(u_{1}v) = \int_{0}^{1} u'(x) v'(x) dx$

Roblema : $a(u_{1}v) = \langle f_{1}v_{1}\rangle_{2} \quad \forall v \in L^{2}(0,1)$
 $(=) \int_{0}^{1} u'(x) v'(x) dx = \int_{0}^{1} f(x) v(x) dx$
 $b_{ij} := \langle f_{1}y_{1}\rangle_{2} = \int_{0}^{1} f(x) x^{j}(1-x) dx$
 $b_{ij} := \langle f_{1}y_{1}\rangle_{2} = \int_{0}^{1} f(x) x^{j}(1-x) dx$
 $b_{ij} := \langle f_{1}y_{1}\rangle_{2} = a(y_{1},y_{1})$

$$M_{ij} = \int_{0}^{1} \frac{d}{dx} \left(x^{i}(1-x) \right) \frac{d}{dx} \left(x^{j}(1-x) \right) dx$$

$$= \frac{(i+1)(j+1)}{(i+j+1)} + \frac{(i+2)(j+2)}{(i+j+3)} + \frac{(i+1)(j+2)}{(i+j+2)} + \frac{(i+2)(j+1)}{(i+j+2)}$$

Mes nvertible y la apoximación de Galerkin es convergente, pero la matriz M está mal condicionada.

El no de condition,

$$\chi(M) = \|M\|_2 \|M^{-1}\|_2$$

aumenta con
$$N \in \mathbb{N}$$
. $||M||_2 := \sqrt{\chi_{max}(M^TM)}$

$$51$$
 $N=3$, $K(M) \approx 8.9 \times 10^{2}$
 $N=4$, $K(M) \approx 2.4 \times 10^{4}$

$$N = 1^{p}, \quad K(M) \approx 1.1 \times 10^{13}$$

calcular M' es muy costoso numericamente y el error aumenta, conforme 1 -> ac. K depende de M' no del algoritmo que se use para calcular M'-

Consideremos mismo problema (11) con el signiente esquema:

$$V_n = \text{Span} \left(\sin \left(j \pi x \right) : l \leq j \leq n \right)$$

In este caso:

$$M_{ij} = \alpha(\psi_{i}, \psi_{i}) = \int_{0}^{1} \frac{d}{dx} \left(\sin(j\pi x) \right) \frac{d}{dx} \left(\sin(i\pi x) \right)$$

$$= i_{j} \pi^{2} \int_{0}^{1} \cos(j\pi x) \cos(i\pi x) dx$$

$$= i_{j} \pi^{2} \int_{0}^{1} + 1 \le i_{j} \le n$$

$$\text{Wathir diagonal}$$

con
$$aj = \frac{2}{\pi j^2} \int_0^1 f(x) \sin(j\pi x) dx$$

$$bj = \int_0^1 f(x) \sin(j\pi x) dx$$

$$=) \quad Un = \frac{2}{\pi^2} \int_0^1 f(y) \sum_{j=1}^n \frac{\sin(j\pi y) \sin(j\pi x)}{j^2} dy$$

Notas:

(4) I generalizaciones de Galerkin: · fetror-Galeshin: teorema de Necas (tarea L): a(·,·): H×V → IR

- · Galerkin no conform o generalizado: no necesariamente $V_h \subset V$ como $V_n \not= V$, $\alpha(\cdot,\cdot)$ se aproxima por $\alpha(\cdot,\cdot) : V_n \times V_n$ Fórmula para el emor.
- · Galerkin discontinuo: funciones que generan vn son continuas por pedatos.
- (B) Elemento finito loasado en tialcricin:

 · discretización del dominio SZ

 · elección de la base de Vin:
 funciones linecles por pedazos.

 [Sección 4)

Método de minimos modrados (courant)

H de Hilart separable A: Da CH -> H Simetrico, positivo definido

DA = H

Hipótesis: existe una A-base de H:

conjunto numerable y completo (9) Jierry C

Da tal gue

1 A 9- Y es una base de H

Bajo esta hipotesis: If felt dado y VEZO es posible hallar mein y constantes G, --, Con tales gue

Minimos cuadrados: aproximir la solución generalizada u+th, de
$$Au = f$$
, por la sulusión un = $\sum_{j=1}^{n} a_j y_j$.

Lande las constantes a_j 's se determinan mediante min $||Aun - f||^2$

Un = $\sum_{j=1}^{n} a_j y_j$.

Para cualquier $v \in Span \{ y_1, \dots, y_n \}$

Para cualquier $v \in Span \{ y_1, \dots, y_n \}$

Para cualquier $v \in Span \{ y_1, \dots, y_n \}$

forma cuadrática

Al resolver $a_j \in Span \{ y_1, \dots, y_n \}$

cobtenemas

 $a_j \in Span \{ y_1, \dots, y_n \}$
 a_j

Mij = (A4i, A4;) M invertible ques (A4;) jean es baie

convergencia: Solvemos Jue of the solventes are
$$uu = 2a_1 e_1$$

Convergencia: Solvemos Jue of the openeralizada are Aulo = f.

A definido positivo: $||u||_A > c ||u||_A > c ||u||_A$

Sea 670 arbitrario. Verificames que

(12)--: $||uu-u_0||_A = \frac{1}{c} ||Au_n-f||$

Esto se sigue de:

 $||uu-u_0||_A^2 = \langle A(uu-u_0), uu-u_0 \rangle$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $\leq ||Au_1-f|| ||u_1-u_0||_A$
 $= \langle A(u_1-u_0), u_1-u_0 \rangle$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $= \langle A(u_1-u_0), u_1-u_0 \rangle$
 $= \langle A(u_1-u_0), u_1-u_0 \rangle$
 $\leq ||Au_1-f, u_1-u_0||_A$
 $= \langle A(u_1-u_0), u_1-u_0 \rangle$
 $= \langle A$