Lección 3.10: Aplicaciones de Rellich-Kondrachov.

Teorema de Rellich-Kondrachov: $\Omega \subseteq \mathbb{R}^N$, abierto, austado con $\partial \Omega \in \mathbb{C}^1$. Si $1 \le p < n$ entonces $W^{1,p}(\Omega) \subset L^2(\Omega)$ $\forall 1 \le q < p^* = np/(n-p)$.

Corolarlo 1: $W^{1}P(\Lambda)$ CCL $P(\Lambda)$, \forall 1 \leq $P<\infty$. (\neq 1 caso p>n se demuestra con Morrey.)

Corolario 2: $N_0^{1P}(\Omega) \subset L^P(\Omega)$, $\forall 1 \leq P < \infty$ (incluso $\leq 1 \leq P \leq 1$).

Notas: (a) si el dominio no es acotado no hay inclusión compacta en general.

(b) si 1 1</sup> i^p(n) < L^p(n)

no es compacta.

Teorema (Rellich-Kondrachov, parte 2) Ω ⊆ IR", abierto, acotado, an ∈ C¹. Entones:

(a) St p=n, $W^{1,n}(\Omega) \subset L^{q}(\Omega) \quad \forall 1 \leq q < \infty$

(b) Si p>n, Wtip(n) CC C[r].

Dam. (a) Subernos que en el caso $1 \le p < n$ $N^{1}PCCL^{2}(\Omega) + q \in (1,p^{+})$. Notamos que $Si p \rightarrow n^{-}$ entonces $p^{*} = np \rightarrow \infty$.

Como Ω es acotado, enfonces $W^{1,n}(\Omega) \subset W^{1,n-\epsilon}(\Omega)$ $\forall \epsilon 70$ ful que $n-\epsilon 70$

En efecto, para walquier multi-indice
$$|x| \in |x|$$
, $|x| \in \mathbb{N}^{1,n}(\Omega)$, sea $|x| = |x|$, $|x| \in \mathbb{N}^{1,n}(\Omega)$, sea $|x| = |x|$, $|x$

$$W^{1,\overline{p}}(\Omega) = W^{1,\overline{n-\epsilon}}(\Omega) \subset L^{\frac{1}{2}}(\Omega)$$

¥ 1≤q < 00 ya gwe 9 € [1, P*) para cse €>0.

Asi, W'in(n) C W'in-E (N) CC La(n)

ya que: 5i una sucesión es acotada en $W^{III}(\Omega)$ per (*) y (**), también 2s acotada en $W^{IIII}=(\Omega)$.

for compacidad of subsucción convergente en 19(s2).

(b) Si p>n enfonces por el teo- de enceje de Sobolev $W^{1,p}(\Omega) \subseteq C^{0,1-Mp}(\overline{\Omega})$

Sea B la bola unitaria en WIP(n):

Entonces: BCW11P(D) CCDD

· ||u||co,1-np(\bar{\alpha}) \leq \C ||u|| Whip(\alpha) \leq \C

$$\Rightarrow \|u\|_{C(\bar{\Omega})} + [u]_{C^{0,1-N_{P}(\bar{\Omega})}} \leq C$$

$$\forall u \in \mathcal{B}$$

Esto implica que: $|U(x) - U(y)| \le C[X-Y]$ $\forall U \in B$ unipromemente en xiy & II. Es decir, las funciones en B son ma fa-milia unif. acotada y equicontinua en C(n). Por Arzela-Ascoll, B es relativamente compacta en C(n). Corolario (teorema de Rellich) Ω≤12°, abjecto, acotado, ∂Ω€C¹, entonces $H^1(\Omega) \subset L^2(\Omega)$ -- (L) Dem. Por RK von p=2 y 1 = 9:=2 < 2* Mediante iteración se puede demostrar: Teorema ILSIR", abierto, acotado, JILECK, RZ 1. Entonces: (a) Si $\frac{1}{p} - \frac{k}{n} > 0$ entonces $W^{k,p}(\Omega) \subset L^{2}(\Omega)$ ₩ g∈ [P, NP). (b) $Si \frac{1}{p} - \frac{k}{n} < 0$ entonces $W^{k_1p}(\Omega) \subset C$ (Ω)

con $Y \in (0,1)$ $Si \frac{n}{p} \in 72+i$ of $Y = \left[\frac{n}{p}\right] + 1 - \frac{n}{p} = 472$.

Ref.; . Edmunds, Evans "spectral theory"
•
· Adams, "sobolev spaces".
Teorema Sea DS R', acotado, abierto;
Teorema Sea DS R, acotado, abierto; 1 = p < 00 y sean k, l = IN U < 0 4 tales que
l>k
Entonces:
1 -
$(a) \ W_{o}^{l,f}(\mathfrak{L}) \subset W_{o}^{k,f}(\mathfrak{L})$
A =
(b) si además arect entonces William cc
MKIG(U)
Da A - 105a a ser 1005 a
Den. Primero observamos que:
$(i) W_0^{1/p}(\Omega) \subset L^p(\Omega)$
(ii) Mis (U) CC Tb(U) 2i guec,
(11) M. (11) CC T (11)
(ver complaries 1 42).
for inducción sobre l>k>0.
(1) El caso l=1 es cierto: l=1>k=0
por (i) y (ii)
(a) thanksis de laducción :
(2) Hipótesis de inducción: para l>k
Υ K2O , W^' C N'''

sea Um E Nº+1,P, acotada, MEIN. Entorces, Lado que Wltip C. Wlip claramente
Um es acotada en Wlip. Asi, Y [x] \le l

D^x Um es acotada en Wlip CC LP

:. I subsicesión D^x Um convergente en L^p

Y [x] \le l :: Um convergente en Wlip concluimos que un acotada en W^{l+1}P. Cierb para 1+1. Conclusión: (a) caso gral. (b) filt C' Complano (a) $H_0^k(\Omega) \subset H_0^{k-1}(\Omega) \subset \dots \subset H_0^1(\Omega) \subset L(\Omega)$ 4 KZ1 (b) Lon 20 (C): HKMICCHK-IMICC ... CCHIMICC L'(N) H K21-Aplicaciones de RK Lema 1 (designaldad de Poincare, versión 3) IL = IR", abierto, acotada, 21 ECI Entonces of C=C(n, 12) >0 tal give

(2) --
$$\|u\|^2 \le C \left[\sum_{|\alpha| \le k} \|D^{\alpha}u\|^2 + \sum_{|\alpha| \le k} \|D^{\alpha}u\|^2 \right]$$
 $\forall u \in H^k(\Omega), k \ge 1.$

Caso particular: $k = 1$
 $\|u\|^2 \le C \left[\int |Du|^2 dx + \left(\int u dx \right)^2 \right]$
 $\forall u \in H^k(\Omega).$

Dem. Es suficiente demostrar (2) para el caso $\|u\|_{H^k(\Omega)} = 1$. En efecto, en el caso $\|u\|_{H^k(\Omega)} = 1$. En efecto, en el caso $\|u\|_{H^k(\Omega)} = 1$.

Dem. Es suficiente demostrai (2) para el caso llull $_{H^{k}(\Omega)} = 1$. En efecto, en el caso general $_{H^{k}(\Omega)} = 1$. $_{H^{k}(\Omega)} = 1$ definimes

$$u := \frac{1}{\left\| v \right\|_{H^{k}(\Omega)}}$$

$$= \int \left\| \left\| v \right\|_{H^{k}(\Omega)} + \sum \left(\int \int u \, dx \right) \right\|_{L^{2}(\Omega)}$$

El lado derecto es homogénea de orden 2:

$$\|D^{\chi}u\|_{L^{2}} = \int |D^{\chi}u|^{2} dx = \underbrace{||\nabla u|^{2}}_{H^{R}} \int |D^{\chi}u|^{2} dx$$

$$\left(\int_{\Omega} D^{2} u \, dx\right)^{2} = \frac{1}{\|v\|_{H^{R}}^{2}} \left(\int_{\Omega} D^{2} v \, dx\right)^{2}$$

Asi, obtenemos (2) para VEHR(N). for contradicción: $\forall j \in \mathbb{N}$ -1 $U_j \in H^k(\Omega)$ con $\|U_j\|_{H^k(\Omega)} = 1$ tal que $1 > j \left[\frac{Z}{|x| = k} \right] \left[\frac{Du_j - 1}{|x| < k} + \frac{Z}{n} \left(\int \frac{Du_j dx}{x} \right) \right]$ For kellich: $H^{k}(\Omega)$ CC $H^{k-1}(\Omega) \Rightarrow existe$ Subsucesión U_{j} convergente en $H^{k-1}(\Omega)$. Asi, $0 \leftarrow \frac{1}{j} > \sum_{|\alpha| < k} \left(\int_{\Omega} D^{\alpha} u_{j} dx \right)^{2}$ $0 \leftarrow \frac{1}{j} > \sum_{|\alpha| < k} ||D^{\alpha} u_{j}||_{L^{2}(\Omega)}$ $||D^{\alpha} u_{j}||_{L^{2}(\Omega)}$ Conclumos que el limite $(\Omega) \ni U := \lim_{j \to \infty} U_j \text{ en } H^{-1}(\Omega)$ es una versión c.d.s. de un polinomia de orden $\leq k$ Ademas, $\|U\|_{H^{k}(\Omega)} = 1$ ya gue $\|U_{i}\|_{H^{k}(\Omega)} = 1$: conduinas que $H^{k}(\Omega) \Rightarrow u = \lim_{i \to \infty} u_{i} = \lim_{i \to \infty} u_{i}$ i.e. $\| u - u_j \|_{\mu^{\mathbf{k}}(N)} \to 0$ Si $j \to \infty$.

```
for otro lado, J Duj dx - 0 si j + 0
 como uj \rightarrow u en H^k(n) = 1 j subsucesión uj tal que
                                    Du; -> Du c.d. s.
   (ya gre conv. en L^p = 1 conv. c.d.s.)
Aplicamos convergencia dominada:
        |Du_i| \leq |Du_i - Du| + |Du|
                y \int |Du| Ax \leq \left( \int |Du|^2 dx \right)^{\frac{1}{2}} \left( \int dx \right)^{\frac{1}{2}}
                       \leq |\Omega|^{2} || \mathcal{D}^{\vee} \mathcal{U} || < \infty
                              \forall |\alpha| \leq k-1
ya gue u \in H^{k}(\Omega).
 Entonces:
```

conv. dominade

$$0 = \lim_{J \to \infty} \int_{\Lambda}^{d} Du_{J} dx = \int_{\Lambda}^{d} \lim_{J \to \infty} Du_{J} dx$$

$$= \int_{\Lambda}^{d} Du dx$$

Towards |x| = k-1 y dead gue $D^{\mu}u = 0$ $C.d.s. \forall |\beta| \ge k$ concluimos gue u es ura versión c.d.s. de un polinomio de order $\le k-1$

Asi, Du con |x|=k-1 es el coeficiente α_{k-1} de un monomio de |a| forma $x_1^{\alpha_1} \cdot x_n^{\alpha_n}$ con $|\alpha| = k-1$.

 $\Rightarrow \int_{0}^{\infty} \int_{0}^{\infty} dx = |\mathcal{L}| d_{k-1} = 0$

i. u es una versión c.d.s. de un polin-mio de orden k-2. Es decir, $D^{\beta}u = \rho$ c.d.s. ψ $|\beta| > k-1$.

Suesivamente, tomando |x| = k-2 |x| = k-3

obtenemos gre U = 0 c.d.s. en Ω . Contracticción con $\| U \|_{K(\Omega)} = 1$.

Lema 2 $\Omega \subseteq \mathbb{R}^n$, abierto, acotado, conexo con $\partial\Omega \in C^1$. Entronais $\exists C = C(N, \Omega) > 0$ tal gue (3) -- . $\| u \|_{L^{2}(\Omega)}^{2} \le C \| D u \|_{L^{2}(\Omega)}^{2} + \int \| v u \|_{dS_{X}}^{2}$ donce $\Gamma \subseteq \partial\Omega$, porción de la frontera con superficie positiva $|\Gamma| = \int dS_x > 0$ y $V_0:H^1(\Omega) \to L^2(\Omega)$ es el operador de fraza. Dem. Por un argumento similar, basta demostrar (3) para llull_{H1(n)} = 1. Por contradicción: suponemos f uj E HIM)
con | Uj | HIM = 1 tal gue (4)- 1 > j [|| Duj || 2 (a) + J [| Kuj | dSx] ∀,j+1N Rellich: H'(n) LCLZ(n) :- j subsucesión uj tal que uj -> u en 12(n). $\frac{1}{J} > \|Duj\|^2_{C(n)} \longrightarrow 0 \quad \text{si } j \rightarrow \infty$ (4) =) $\frac{1}{i} > \int_{\Omega} |Y_0 u_j|^2 dS_x \longrightarrow 0$

```
Lema auxiliar: \{U_j \downarrow C H^k(\Omega) \text{ con } \|U_j\|_{H^k} = 1

\forall j \quad \forall U_j \rightarrow U \text{ en } H^{k-1}(\Omega) = 7 \text{ } U \in H^k(\Omega)

\forall \quad \|U\|_{H^k(\Omega)} = 1.
  Dem. Ejercico (pre compacidad de la bola en HK(II) y unicidad del límite débil) [
     ||U_j||_{H^1(\Omega)} = 1
                                                                            \|\mu\|_{H^{1}(\Omega)} = 1.
   J \rightarrow \infty
\int_{\mathbb{R}^2(\mathbb{R})} |Du| |Du| |L^2(\mathbb{R})
                                             conclusión IIDull = 0
                                                      c. U es constante cols.
                                                                    en \Omega.
 como \Omega es conexo, \|u\|_{H^1} = 1 entonas U \equiv A_0 c.d.s. en \Omega con A_0 > 0.
Notamos A_0 = U \in H(\Omega) \cap C(\overline{\Omega}). For a teorema de traza
                            V_0 U = V_{120} = 0 > 0
   \Rightarrow \int_{\Omega} |Y_0 \mathcal{U}|^2 dS_{\times} = \Lambda_0 |\Gamma| > 0.
```

Per Continuidad or (a traza esto implica que
$$\int |Y_0u|^2 dS_X \to 0$$
 si $j \to \infty$)

Recordation : $\int \Omega \in C'$, $I = p \infty$
 $\int aparador acotado, continuo$
 $\int Y_0 : W^{I,p}(\Omega) \to L^p(\partial \Omega)$
 $\int |Y_0u|^2 dS_X = 0$ convedicción

 $\int Y_0 : W^{I,p}(\Omega) \to L^p(\partial \Omega)$
 $\int |Y_0u|^2 dS_X = 0$ continuo

 $\int Y_0 : W^{I,p}(\Omega) \to L^p(\partial \Omega)$
 $\int |Y_0u|^2 dS_X = 0$ continuo

 $\int Y_0 : W^{I,p}(\Omega) \to L^p(\partial \Omega)$
 $\int |Y_0u|^2 dS_X = 0$ continuo

 $\int |Y_0u|^2 dS_X = 0$ continuo

•

Sea
$$x^{\epsilon} \neq 20$$
, localmente plana: $(x_{n} \circ 0) = 20$
 $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$
 $(x_{n} \circ 0) = 0$

Sean $(x_{n} \circ 0) = 0$
 $(x_{n} \circ$

Tomando
$$p = p > 1 \Rightarrow \infty > q = \frac{p}{p-1} > 0$$

Y

||You|| $_{L^{p}(m)}^{p} \in C \in P + C$ ||u|| $_{L^{p}(n)}^{p}$

||Xou|| $_{L^{p}(m)}^{p} \in C \in P + C$ ||u|| $_{L^{p}(n)}^{p}$

||Xou|| $_{L^{p}(m)}^{p} \in C \in P + C$ ||u|| $_{L^{p}(n)}^{p}$

||Xou|| $_{L^{p}(m)}^{p} \in C \in P + C$ || $_{L^{p}(m)}^{p$

+ €>0 y j,k>>1.
:- You; es de cauchy en L'(2n)
completo.
:- You; es de cauchy en LP(2n) completo. :. You; converge en L'(2n)