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Abstract. In this paper, we present a systematic approach for obtain-
ing qualitatively and quantitatively correct mathematical models of
some biological phenomena with time-lags. Features of our approach
are the development of a hierarchy of related models and the estima-
tion of parameter values, along with their non-linear biases and stan-
dard deviations, for sets of experimental data.

We demonstrate our method of solving parameter estimation prob-
lems for neutral delay differential equations by analyzing some models
of cell growth that incorporate a time-lag in the cell division phase. We
show that these models are more consistent with certain reported data
than the classic exponential growth model. Although the exponential
growth model provides estimates of some of the growth characteristics,
such as the population-doubling time, the time-lag growth models can
additionally provide estimates of: (i) the fraction of cells that are
dividing, (ii) the rate of commitment of cells to cell division, (iii) the
initial distribution of cells in the cell cycle, and (iv) the degree of
synchronization of cells in the (initial) cell population.

Key words: Cell proliferation — Mathematical modelling — Time-lag —
Neutral delay differential equation — Sensitivity analysis

1 Introduction

The bioscientific literature contains many reports of in vitro cell growth
[5, 9—11, 14, 20, 23, 24, 36]. Some of these authors have attempted to
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provide insight into the cell proliferation processes using mathematical
models based, in particular, on difference, ordinary differential and
delay differential equations. In this paper, we compare some math-
ematical models of cell growth based on a hierarchy of differential
equations, using data reported in [16], [22] and [24].

1.1 Cell proliferation

Whilst all cell growth has features in common [35], researchers seek to
relate a culture’s growth characteristics to those of the cells that
compose the culture. Some of the characteristics they consider are:
(i) the culture-doubling time, (ii) the growth fraction, (iii) the average
cell-division time (the average time taken for a single cell to divide),
(iv) the rate of commitment of cells to cell division, (v) the initial distribu-
tion of cells in the cell cycle (specified by a function), and (vi) the degree
of synchronization of cells in the cell population [5, 10, 14, 24, 31].
Although the culture-doubling time is a macroscopic feature of the cell
culture, it clearly depends on the properties of individual cells. The
‘initial distribution of cells’ refers to those cells present in the culture at
time zero and the time when they first divide.

In the literature, we find the claim that the growth of various types
of cells has certain qualitative features in common [35, p.1174]:

‘‘Studies during the past fifty years indicate that all cells grow in
an essentially identical fashion, including those ranging from bac-
teria, yeasts, and protozoa to avian and mammalian cells.’’

and [11, p.1316] :

‘‘It is indeed striking that the growth characteristics found for
Interleukin-2-dependent T-cells are identical to those of all other
cells that have been examined, including bacteria, yeasts and proto-
zoa, and all mammalian cells.’’

If one accepts these claims, then all mathematical models of cell
growth should have certain features in common. However, certain
terms in a mathematical model may have a significant quantitative
effect in the study of cells of a given type, whilst being insignificant in
the study of cells of a different type (or of similar cells under differing
conditions).

In our view, some features of cell growth are typical of many other
biological systems, such as population growth and immunological and
epidemiological phenomena. Thus this paper may be of wider interest
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than our title suggests. Quoting from [27],

‘‘2 model selection is the most fundamental and crucial step in
the study of all phenomena.’’.

However, there are also a number of factors that can give rise to
different patterns of cell growth, for example, (i) the degree of synchro-
nization of cells in the (initial) cell population, (ii) the homogeneity of
the cell population, and (iii) the experimental conditions. Cells in an
initially synchronized cell population are all assumed to be at the same
point of the cell cycle at time zero, whereas cells in an homogeneous
culture are all assumed to have the same growth characteristics, in
particular, the same cell-division time.

1.2 Features of models

Both discrete and continuous models have been used to model cell
growth. In the models that we consider, the time-lag q actually corre-
sponds to four distinguishable time-lags that represent: (i) the time
between the start of the cell division process and the start of DNA
synthesis (G

1
phase), (ii) the duration of the DNA synthesis (S phase),

(iii) the time between the end of DNA synthesis and the start of mitosis
(G

2
phase), and (iv) the duration of the mitosis stage (M phase),

respectively. A simple discrete model for a synchronized and homo-
geneous (and hence synchronous [10, pp.153—168]) cell population is

N
n`1

"2N
n

with N
0
"N, (1)

where N
n
"N (t

n
), t

n`1
!t

n
"q and t

0
"0. The assumptions of this

model are somewhat artificial, namely that every cell divides exactly
once into two viable cells every q hours precisely. Thus there is a jump in
the size of the cell population every q hours and a graph of N(t), where
N(t) is a continuous extension of the discrete solution, resembles
a staircase (see Fig. 1a). However, graphs of experimental data for
synchronous cell growth typically only approximate a staircase due to,
for example, variations in the cell-division time.

A common continuous model is the exponential growth model,

dN
dt

"o
0
N (t) with N(0)"N, (2)

that has a strictly increasing solution for o
0
'0 ( see Fig. 1b). Between

these two types of qualitative behaviour, there is a range of growth
patterns, some of which are exhibited by the experimental data that we
analyze.
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Fig. 1a, b. Graphs of idealized synchronous and exponential cell growth, respectively

For sufficiently large cell populations, continuous growth models
can be used to approximate what is, essentially, a discrete process.
Thus ordinary differential equations (ODEs) are frequently used to
model cell growth. However, the discrete model (1) includes an explicit
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time-lag q that the simple ODE model (2) cannot model explicitly
— some researchers have recognized that a time-lag (or delay) in the cell
division phase suggests the use of delay differential equations (DDEs)
rather than ODEs. Quoting from [23] :

‘‘A time delay between the beginning of activation’’ of cell divi-
sion in T-cell dynamics ‘‘and the actual proliferation has therefore to
be accounted for in the equations.’’

Indeed, some sets of experimental data clearly exhibit features that are
consistent with there being a time-lag in the cell division phase [22, 24]
(see Figs. 4 and 5a). In view of this, we compare how well two types of
simple linear model (ones with a time-lag and ones without a time-lag)
provide qualitative and quantitative consistency with some experi-
mental cell growth data. More detailed models can be developed, see
[9] and [26], for example.

1.3 Mathematical models

A good mathematical model should allow a phenomenon to be investi-
gated by analyzing the features of the model. The model should be able
to predict new experimental observations and to determine the signifi-
cance of each of the model parameters (both qualitatively and quantitat-
ively). Usually the simplest model that is consistent with known data is
used, but a hierarchy of increasingly complex models can be developed
with the aim of systematizing the process of model selection for specific
types of data. Quoting from [27],

‘‘The highest level of sophistication of a model lies at the top of
this hierarchy, a relatively unsophisticated model may rest at the
lower end of the hierarchy. Which model is appropriate for a par-
ticular application is 2 determined through methods of a posteriori
error estimation 2 ’’.

Thus, for example, a whole range of models have been used in the
analysis of Interleukin-2-dependent T-cell growth, from models based
on ODEs [20] to models based on DDEs [2, 36] and neutral delay
differential equations (NDDEs) [23]. However, in some cases it is
important to obtain accurate parameter values,1 for example, in viral
immunology where the T-cell proliferation parameters have a

—————
1We require quantitative rather than qualitative consistency.
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Fig. 2a–d. Graphs of t(t) and N(t) for the uniform and bell-shaped initial cell distributions

significant effect on the phenotype of the virus-host interaction [25].
Reliable parameter values can only be obtained if the right type of
model is used. Another important question is whether any of the model
parameters represent meaningful biological quantities.
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Fig. 2a–d. Continued

The precise mechanisms of cell growth are very complex, but both
the exponential growth model (2) (an ODE model) and the general
linear time-lag growth model (3) (an NDDE model) are quite simple.
However, as we demonstrate in this paper, time-lag growth models can
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Fig. 3a and b. Pre-B-cells were grown at 37 °C in 5% CO
2

as single cell suspensions in
RPMI 1640, supplemented with 10% FCS, 50U/ml penicillin, 50kg/ml streptomycin
and 2mM L-glutamine. On day 0, cells were seeded out at a density of 1]105 cells/ml
under the same conditions, except that the FCS concentration was varied. Continuous
labelling with bromodeoxyuridine showed that the growth fraction was close to unity
for all FCS concentrations down to 0.5%.
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provide significant improvements in both the qualitative and quanti-
tative consistency of the model with certain types of data. When
developing a mathematical model, some researchers focus on the
qualitative consistency of the model, and place less emphasis on the
quantitative consistency. Indeed, some researchers avoid a particular
mathematical model if no analytical closed-form solution exists. This
can severely reduce the range of models throughout the model hier-
archy and is, in fact, unnecessarily restrictive. For example, functional
differential equation models would be restricted to linear problems, or
non-linear problems of special types. The use of numerical methods,
rather than analytical methods, to obtain a solution to the model
equations greatly increases the range of available models. However,
simple models can often provide genuine insight into the processes of
cell division [15, 34].

Throughout this paper, we consider mathematical models based on
three types of differential equation — ordinary, delay and neutral delay.
Although analytical solutions exist for the ODE models, the same
cannot be said for the DDE and NDDE models (except in special
cases). The choice of differential equation used in our models takes into
account the qualitative features of the experimental data. For example,
Mitchison and Vincent [22] showed that the growth of several types of
synchronous cell cultures has a common qualitative feature, namely
prolonged (initial) step-like growth (cf. Fig. 1a). However, whilst it is
impossible for the solution of an ODE to exhibit such behaviour, and
extremely difficult to find a DDE that exhibits such behaviour (due to
the smoothing of the solution), a simple NDDE can easily reproduce
such behaviour (see Fig. 5b). Other types of differential equation model
also appear in the literature, from Volterra functional differential
equations [17, 33] to partial differential equations that have been used
for modelling structured populations [9, 21, 32].

2 Some simple mathematical models

Our discussion should be of general interest because our mathematical
models are not specific to the types of cell considered, but can be used
in modelling many phenomena in which there is a time-lag. The models
that we consider are selected from a hierarchy, the most complex
model being

dN
dt

"o
0
N(t)#o

1
N (t!q

#%--
)#o

2
N@(t!q

#%--
) (t70) ,

(3)
N(t)"W(t) (!q

#%--
6t(0) ,
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Fig. 4a–d. A culture of cdc10-129 rum1D fission yeast, schizosaccharomyces pombe,
with deleted rum1-gene was grown in minimal medium at 25 °C and cells were
synchronized using an elutriator rotor. The cells were then incubated at 36 °C, and
samples taken every 30 minutes to measure the number of cells. The graphs
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represent. a the exponential growth model, and the time-lag growth model fitting
b q

#%--
, c q

#%--
and o

1
, and d q

#%--
, o

1
and b. The data given in Table 3a are represented by

C’s in the graphs.
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Fig. 5a and b. Data for synchronous E. coli growth and a graph of the solution of an
NDDE.
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Table 1. A biological interpretation of the parameters in the NDDE (3)

Parameter Biological interpretation

q
#%--

'0 The average cell-division time
o
0
70 The proportionate rate of ‘instantaneous’ asynchronous cell

growth
o
1
70 The proportionate rate of ‘delayed’ asynchronous cell growth

06o
2
62 A measure of the proportionate rate of ‘delayed’ synchronous

cell growth
06b61 The fraction of cells dividing over the first step

where N@(t) is the right-hand derivative of N(t) with respect to t and
N(0)"N is given. This equation is a linear NDDE with four scalar
parameters o

0
, o

1
, o

2
and q

#%--
. An additional parameter b may be

introduced to model the fraction of cells that divide over the first step,
so that N (t)"bW (t) for t3[!q

#%--
, 0). One possible biological inter-

pretation of these parameters is given in Table 1.
By ‘instantaneous’ cell growth, we mean that the rate of growth is

dependent on the current cell population and, similarly, by ‘delayed’
cell growth, we mean that the rate of growth is dependent on some
previous cell population. In the case of idealized synchronous growth,
o
0
"0, o

1
"0 and o

2
"2, so that the degree of synchronization of

cells in the cell population remains constant, but it should be noted
that the effects of synchronizing a cell culture are usually only tempo-
rary. It should also be noted that the method of synchronizing the cells
may damage the cell culture [13] and result in the initial cell growth
being less than would otherwise be predicted.

The simplest model based on (3) is the exponential growth model,

dN
dt

"o
0
N (t) (t70) , (4)

with N(t)"N exp(o
0
t) for t70. Another model based on (3) is the

time-lag growth model

dN
dt

"o
1
N(t!q

#%--
) (t70),

N(t)"W(t) (!q
#%--

6t(0).
(5)

This DDE may be solved by repeated integration over intervals of
length q

#%--
or, using Laplace transform techniques, be expressed as an

integral in the complex plane.
One of our aims is to demonstrate the qualitative and quantitative

differences between different models based on (3). In general, the
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existence of closed-form solutions of (4) and (5) is of little practical use
when it comes to estimating parameter values, especially since closed-
form solutions do not exist for most non-linear models. In practice,
(approximate) solutions are obtained numerically ( see Sect. 3.1), and so
a much wider range of models can be considered.

2.1 The exponential growth model

The exponential growth model (4) has been used to model various
types of cell growth [19, 31]. The rate of growth of the number of cells
N(t) is proportional to N (t): that is to say, dN/dt"o

0
N(t), where o

0
is

the growth rate. Only the culture-doubling time, q
#6-563%

"ln(2)/o
0
, can

be estimated from the exponential growth model. Further limitations
of this model are discussed in [31], quoting from the abstract:

When certain assumptions are not satisfied ‘‘the use of the
exponential growth equation leads to errors in the determination of
both population and cell generation time.’’

It has also been noted in [5, 16] that if the fraction of proliferating cells
is less than unity, or cell growth is not exponential, then the relation of
q
#6-563%

to the (biologically meaningful) average cell-division time q
#%--

is
unclear.

2.2 A time-lag growth model

Some researchers have recognized that the use of DDEs greatly in-
creases the range of qualitative behaviour that can be modelled accu-
rately [8, 18]. The extension of the exponential growth model (4) by the
inclusion of a delay can be justified by assuming that cells are initially
inactive and that, once activated, cell division is not instantaneous.
(Thus the culture-doubling time q

#6-563%
is estimated by q

#%--
.) The rate at

which new cells appear at time t7q
#%--

is proportional to the number
of cells at time t!q

#%--
, where q

#%--
is the average cell-division time:2

that is to say, dN/dt"o
1
N(t!q

#%--
), where o

1
is the growth rate. It is

necessary to specify a function t(t) over the initial interval [!q
#%--

, 0)
that defines the rate at which new cells appear over the interval
[0, q

#%--
). Thus N (t)"N#: t

0
t(s!q

#%--
) ds for t3[0, q

#%--
). Assuming

————
2 If q

#%--
is ‘‘small’’, the data may be inadequate to distinguish between the two types of

model.
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that each cell divides at most once over the interval [0, q
#%--

), we have
that :q#%--

0
t(s!q

#%--
) ds6N. The function t (t) represents the initial

distribution of cells in the cell culture (cf. [10, Chap. 2]) and models the
initial inhomogeneity in the cell population — including variations in
the cell-division time of individual cells (that are normally distributed
when examined as a function of the cell-division rate [1, 11]). The value
of t(t!q

#%--
) gives the number of cells that are present in the culture at

time zero that divide for the first time at time t. An assumption in our
model is that no cell divisions occur before time zero, so that N@(t)"0
for t3[!q

#%--
, 0). We introduce the initial function

W(t)"
1
o
1

t(t) ,

so that3

dN
dt

"o
1
N (t!q

#%--
) (t70), N(t)"W(t) (!q

#%--
6t(0) .

We consider two initial functions that correspond to different initial
distributions of cells over the cell cycle. In both cases, t(t)70 and we
assume that :q#%--

0
t(s!q

#%--
) ds"N:

Uniform distribution (asynchronous growth). Initially the cells are as-
sumed to be uniformly distributed over the cell cycle, or the variation
in the duration of the cell-cycle is comparable with the length of the cell
cycle itself [11, 12, 14, 37]. In this case t(t)"N/q

#%--
, so that

dN/dt"N/q
#%--

for t3[0, q
#%--

). Thus there is a steady appearance of
cells over the interval [0, q

#%--
) (see Figs. 2a and b).

Bell-shaped distribution (synchronized growth). A bell-shaped initial
function corresponds to non-monotone cell growth. The cells are
assumed to be initially synchronized and have a low variability in their
growth characteristics [11, 12, 24, 30]. The function t(t) is defined in
terms of the bell-shaped function E(t) [7], where

E(t)"G
exp[!1/(1!t2)] for DtD(1,

0 for DtD71.
(6)

t(t) is taken as a multiple of E((2t#(t
s
#t

f
))/(t

s
!t

f
)), where q

#%--
!t

s
and q

#%--
!t

f
(06t

f
(t

s
6q

#%--
) specify when the first generation of

cells starts and finishes appearing, respectively (see Figs. 2c and d).

————
3The experiment is assumed to start at time t"0. However it would not be correct to
interpret W(t) as the number of cells N (t) for t3[!q

#%--
, 0), rather that o

1
W(t!q

#%--
)

corresponds to the rate of cell growth dN/dt for t3[0, q
#%--

).
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3 Numerical methods

There is a substantial literature on the numerical solution of DDEs [4].
The numerical methods used for solving the parameter estimation
problems in this paper are discussed in [28]. Some of the difficulties
that can arise when estimating parameters in NDDEs, and references
to other work in this area, appear in [3].

3.1 NDDE solvers

Codes for solving NDDEs numerically are based on ODE solvers.
However, when adapting an ODE solver, there are several issues that
must be addressed [4]:

f The provision of a suitable — robust, but reasonably cheap — con-
tinuous extension (dense output) for evaluating delayed solution and
derivative terms.

f The effect and propagation of jump discontinuities in derivatives of
the solution.

f The treatment of ‘small’ delays when using explicit solution
methods.

There are a number of codes available for solving evolutionary DDEs.
A feature of such codes is that they (aim to) produce a numerical
solution to within a requested accuracy. Paul [28] has written such
a code based on the Dormand and Prince fifth-order Runge—Kutta
ODE method and a fifth-order Hermite interpolant due to Shampine.
The code is uniformly fifth-order accurate for ODEs, DDEs and
NDDEs.4

3.2 Parameter estimation for NDDEs

The task of parameter estimation is one of minimizing an objective
function U (p), say, based on unknown parameters p and sample data
Mz

i
, N(z

i
)N. In the case of NDDEs, this can mean estimating the initial

values and parameters in the derivatives (as in the ODE case), but also
estimating the position of the initial point, (parameters in) the initial
functions, (parameters in) the initial derivatives and (parameters in) the
delay functions.

—————
4The code is available for non-commercial use by emailing na.cpaul@na-net.ornl.gov.
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Consider, for example, estimating (some of ) the parameters in the
NDDE (3): Given an initial value N and initial function W(t) for
t3[!q

#%--
, 0), each set of parameter values defines a solution N(t),

N(t; p), where p"[o
0
, o

1
, o

2
, q

#%--
, b]. The optimum least-squares para-

meters p* satisfy U(p*)6U(p) for all admissible values of p and p*,
where

U(p):"
n
+
i/1

(N(z
i
; p)!N(z

i
))2. (7)

There are two types of numerical method for finding p*, derivative-free
methods and those that use derivatives of U(p). However, in general,
the solution of a (neutral) DDE has jump discontinuities in its deriva-
tives, in the case of (3) at points kq

#%--
for k"1, 2, 2 . These discon-

tinuities can propagate into the objective function, so that U (p) and its
derivatives suffer jumps. In the case of (3), for example, a jump in
N@(t;p) propagates into U (p) when the time-lag q

#%--
is being estimated

and the position of the jump in N@(t;p) crosses a data point z
i

as
q
#%--

varies. A detailed discussion of the mechanism by which jump
discontinuities propagate into U (p) appears in [3].

A method of finding the optimum parameter values is as follows:
First, the model equations are solved using the current (initial) param-
eter values p and then the value of the objective function U (p) is
calculated. Next, the minimization algorithm adjusts the parameter
values so as to reduce the value of U (p). Finally, when no further
reduction in the value of U(p) is possible, the (local) best-fit parameter
values have been found. In order to find the global best-fit (and hence
optimum) parameter values p*, the initial parameter values must be
sufficiently close to p*. Thus good initial parameter estimates are
essential if p* is to be found. Such estimates can sometimes be found by
modelling a sequence of subsets of the experimental data; as the size of
the subset increases, the estimate of the best-fit parameter values
improves. This approach can be very efficient when solving some
immune response models [7, 18].

There are several least-squares minimization codes available,5 for
example, E04UPF in the NAG library, LMDIF from NETLIB and
fmins in MATLAB. However, a number of points should be noted:

f Usually the model solution values MN(z
i
, p)N are obtained numerically.

f The effect of the limited accuracy of MN(z
i
, p)N on the minimization

code should be assessed, especially when finite-difference methods
are used to approximate derivatives of U(p).

—————
5In this paper, we used LMDIF that solves unconstrained least-squares minimization
problems.
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f It is generally assumed that U(p) is sufficiently smooth everywhere
but, when estimating parameters in DDEs and NDDEs, U(p) can be
discontinuous almost anywhere [3].

f The chances of finding p* can be improved by specifying lower
and/or upper bounds on the parameter values (using a priori in-
formation).

f The computational effects of variations in scale between parameter
values can be reduced by rescaling the parameters to be of the same
order of magnitude.

3.3 Sensitivity analysis

One of the aims of the mathematical modelling of cell growth is to
provide reliable estimates of biological parameters. Thus, having deter-
mined a best-fit set of parameter values, it is useful to have some
indication of the standard deviation of each parameter value. However,
one of the underlying statistical assumptions that allows the standard
deviations to be estimated is that the parameter estimation problem is
(almost) linear. One method of assessing the impact of non-linearity is
to determine the bias of each parameter value due to the non-linearity
of the problem [29, Sect. 2.6]. If this non-linear bias is small, usually
less than 1%, then the parameter estimates and their standard devi-
ations can be considered to be reliable.

One approach for estimating the standard deviations Mp(p
i
)Nr

i/1
of

the parameter values p is given in [6, pp. 206—208]. The method uses
the Hessian H (p) of the objective function to approximate the
covariance matrix [1

ij
], where

[1
ij
]r
i,j/1

"2
U (p)
n!r

H~1(p)

and n!r is the number of degrees of freedom. However, in our case,
the Hessian H(p) must itself be estimated using

H(p)"C
L2U

Lp
i
Lp

j
D

r

i, j/1

+2C
n
+
k/1

LN(z
k
; p)

Lp
i

LN (z
k
; p)

Lp
j
D
r

i, j/1

.

An estimate of the standard deviation of the parameter p
i
is then given

by p (p
i
)"J1

ii
.

The sensitivity coefficients MLN(z
k
; p)/Lp

i
N are obtained by

differentiating equation (3) with respect to the parameter p
i
, integ-

rating the resulting differential equation with respect to t, and
evaluating the solution at the data points z

k
for k"1, 2, 2 , n. For
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example,

N@oÒ
(t; p)"N(t; p)#o

0
NoÒ

(t; p)#o
1
NoÒ

(t!q
#%--

; p)#o
2
N@oÒ

(t!q
#%--

; p)

(t70),

where

NoÒ
(t; p),

LN
Lo

0

with NoÒ
(t; p)"

LW
Lo

0

for t3[!q
#%--

, 0) .

Similar equations can be obtained for N@oÇ
(t; p), N@oÈ

(t; p) and N@b(t; p),
but N@q#%-- (t; p) satisfies

N@q#%-- (t; p)"o
0
Nq#%-- (t; p)#o

1
Nq#%-- (t!q

#%--
; p)!o

1
N(t!q

#%--
; p)

#o
2
N@q#%--(t!q

#%--
; p)!o

2
N@@(t!q

#%--
; p) , (t70) (8)

where

N@q#%-- (t; p)"
d
dt

LN
Lq

#%--

with Nq#%-- (t; p)"
LW
Lq

#%--

for t3[!q
#%--

, 0) .

Equation (8) may be solved directly, given a suitable approximation to
N@@(t; p) [38, p. 121], or may be rewritten as a pair of first-order
NDDEs provided that N@(t) and N@@(t) are always taken as being
right-hand derivatives and the jump discontinuities in N(t) and its
derivatives are treated appropriately.

4 Patterns of cell growth

We analyze three different patterns of cell growth in order to demon-
strate the qualitative and quantitative differences between various
models in our hierarchy. The qualitative fit is indicated by a graph of
the best-fit solution and the experimental data, whilst the quantitative
fit is indicated by the norm of the residual vector DDErr DD

2
"JU(p*)

and the standard deviations of the best-fit parameter values. The
reliability of the parameter values is also dependent on the non-
linearity of the parameter estimation problem, and so each parameter
value is given with an estimate of its non-linear bias in the form
‘parameter (bias%)’.

The first set of data exhibits ‘classic’ exponential growth, the second
set exhibits initial step-like growth that rapidly smooths, and the final
set exhibits prolonged step-like growth.
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4.1 Pre-B-cell growth in fetal calf serum

We consider experimental data for the growth of Reh cells of haema-
topoietic origin (pre-B-cells) in different concentrations of fetal calf
serum (FCS) [16]. In obtaining data from the graphs in [16], we took
the average value of the range of values for the cell concentration.
Features of the model are: (i) The initial cell population is uniformly
distributed between the (G

0
#G

1
)-phases and the (S#G

2
#M)-

phases of the cell cycle. (ii) The growth fraction is close to unity. When
specifying a time-lag model, (i) implies that W (t)"N and (ii) implies
that o

1
"1/q

#%--
. The optimum parameter values for modelling the data

in Table 2a appear in Table 2b.

Table 2a. Data for pre-B-cell growth at different concentrations of fetal calf serum

Data

Time (hrs) 0.0 20.0 42.9 71.8 88.6

Data set Concentration (cells/ml)

0% FCS 1.0]105 1.20]105 1.26]105 1.25]105 1.34]105

0.5% FCS 1.0]105 1.47]105 1.83]105 2.29]105 3.10]105

2% FCS 1.0]105 1.97]105 3.29]105 5.62]105 7.68]105

10% FCS 1.0]105 2.07]105 4.23]105 10.50]105 17.75]105

25% FCS 1.0]105 2.07]105 4.23]105 10.50]105 18.86]105

Table 2b. Least-square estimates and standard deviations of the parameters for
pre-B-cell growth

Exponential model Time-lag model

Data set q
#6-563%

(hrs) p(q
#6-563%

) DDErrDD
2

q
#%--

(hrs) p(q
#%--

) DDErrDD
2

0% FCS 194.9 (3.31%) 28.1 0.166]105 241.1 (3.34%) 36.1 0.153]105

0.5% FCS 55.27 (0.38%) 1.89 0.285]105 51.38 (0.30%) 1.63 0.233]105

2% FCS 29.65 (0.19%) 0.60 0.769]105 25.84 (0.19%) 0.38 0.525]105

10% FCS 21.31 (0.01%) 0.06 0.313]105 18.22 (0.00%) 0.01 0.062]105

25% FCS 20.95 (0.01%) 0.06 0.322]105 17.90 (0.02%) 0.08 0.523]105
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The values of q
#6-563%

and q
#%--

in Table 2b indicate that increasing
the concentration of FCS reduces the cell-division time. The quantitat-
ive consistency of the exponential growth model (4) and time-lag
growth model (5) with the data is indicated by the size of DDErrDD

2
. The

non-linear bias in the parameter estimates for the 0% FCS data is
explained by the fact that one of the assumptions of our mathematical
model, namely that the growth fraction is close to unity, is not satisfied.
The qualitative consistency of the models is indicated by the graphs in
Fig. 3, where the graphs for the exponential model and time-lag model
are identical.

Although the estimates of q
#6-563%

are consistently higher than the
estimates of q

#%--
(except when the FCS concentration is 0%), the

standard deviations of the parameter values are similar. However,
the exponential model cannot provide estimates of the average cell-
division time, the rate of commitment of cells to cell division, or the
initial distribution of cells in the cell cycle.

4.2 Growth of fission yeast

We analyze the growth of fission yeast using data that does not exhibit
exponential growth [24]. (Non-exponential growth has also been re-
ported for other types of cells [5, 31].) The data for yeast growth are
given in Table 3a (see [24, Fig. 4f ]). Features of the model are: (i) The
cell growth is not exponential. (ii) The cells are synchronized at time
zero. When specifying a time-lag model, (ii) implies that the bell-shaped
initial function (6) should be used rather than a constant initial function.

Once again, the exponential growth model can only provide an
estimate of the culture-doubling time q

#6-563%
. However, depending on

the number of parameters being estimated, the time-lag growth model
(5) can provide estimates of the average cell-division time q

#%--
, the

fraction b of cells dividing over the first step, and the rate of commit-
ment of cells o

1
to cell division (see Table 3b). Using the values

t
s
"2.5 hrs. and t

f
"0.5 hrs. in the bell-shaped function (see [24] for

the septation index), we obtain:

f Fit q
#%--

with b"1, o
1
"1/q

#%--
and W (t)"cNq

#%--
E (t#1.5) (see

Fig. 4b).
f Fit q

#%--
and o

1
with b"1 and W(t)"c (N/o

1
)E(t#1.5) (see Fig. 4c).

f Fit q
#%--

, o
1

and b with W(t)"c (Nb/o
1
)E(t#1.5) (see Fig. 4d).

(The scaling factor c+2.25 ensures that :q#%--
0

t(s!q
#%--

) ds"N.)
The quantitative consistency of the exponential model is worse

than that of the time-lag model (as measured by DDErr DD
2
). Table 3b also
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indicates that, as the number of parameters being estimated in the
time-lag model increases, the quantitative consistency of the model
with the data improves significantly. However, the standard deviations
in Table 3b also indicate that, as the number of parameters being
estimated in the time-lag model increases, the accuracy of the param-
eter estimates improves. We also note that the values of q

#6-563%
and

q
#%--

for the three-parameter time-lag model are the same, although
their standard deviations differ by a factor of 6. The qualitative consis-
tency of the models is indicated by the graphs in Fig. 4.

4.3 Growth of Escherichia coli colonies

We model a synchronous culture of E. coli colonies that exhibits
prolonged step-like growth [22, Fig. 4]. The term ‘synchronous’ refers
to the fact that the cells in the culture are homogeneous and synchro-
nized [10]. Thus features of the model are: (i) All the cells have the
same division time. (ii) All the cells divide simultaneously. (iii) There is
prolonged initial step-like growth. (iv) The initial number of E.
coli colonies is unknown. When specifying a time-lag model, (ii) im-
plies that the bell-shaped initial function (6) should be used, and
(iii) suggests that a neutral delay term should be included in the
time-lag model (for qualitative reasons). The values of t

s
and t

f
re-

quired for (6) do not appear in [22] so we have used t
s
"q

#%--
and

t
f
"0, but they could equally be treated as parameters to be estimated.

Also, because no cell divisions (are assumed to) occur before time zero,
the initial derivative for (3) is N@(t)"0 for t3[!q

#%--
, 0).

A significant qualitative feature of the data is the prolonged step-
like growth pattern (see Fig. 5a). This pattern is typical of synchronous
cell growth (cf. Fig. 1a) and is most easily modelled using a neutral
delay term (see Fig. 5b). In Fig. 5b, steps occur in the solution of the
NDDE at every multiple of q, suggesting that an initial estimate of 20
minutes for q

#%--
may be used for modelling the E. coli.

Another significant feature of the data is the fact that the initial
(integer) number of E. coli colonies, N, is unknown. There are two
solutions to this problem: (i) N can be specified as a parameter to be
estimated, or (ii) N can be estimated by backwards continuation of the
data. Two possible values for N are 114 (based on linear extrapolation
from the first two data points) and 99 (treating the first data point as
being spurious).6

—————
6We use the value that provides the best-fit to the data.
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The time-lag models that we consider are:

f Fit q
#%--

with o
0
"0, o

1
"1/q

#%--
, o

2
"0, b"1 and W(t)"2/q

#%--
]

cNq
#%--

E (2t/q
#%--

#1) (see Fig. 6b).
f Fit q

#%--
, o

0
and o

1
with o

2
"0, b"1 and W(t)"2/q

#%--
]c(N/o

1
)

E(2t/q
#%--

#1) (see Fig. 6c).
f Fit q

#%--
, o

0
, o

1
, o

2
and b with W(t)"2/q

#%--
]c(Nb/o

1
) E (2t/q

#%--
#1)

(see Fig. 6d).

It is clear from Table 4b and the graphs in Fig. 6 that the hierarchy
of NDDE models provides better qualitative and quantitative consist-
ency with the data than the exponential model. In the five parameter
time-lag model, the value of b indicates that only a small fraction of the
E. coli colonies divide over the first interval [0, q

#%--
]. This observation

is confirmed by analyzing the data in Table 4a where, despite an initial
reduction in the number of E. coli colonies, during the first 25 minutes
there is only a 15% increase in the number of E. coli colonies. How-
ever, as Mitchison and Vincent [22] remark,

‘‘There may also be a lag before the synchronous culture attains
its full growth rate 2 ’’,

and so this behaviour is not unexpected. Also, the values o
0
+0,

o
1
+0 and o

2
"1.87 indicate that the E. coli colonies slowly become

desynchronized over time (see below), and this can be seen in the graph
of the data (Fig. 5a). Our biological interpretation of equation (3) is
that the ODE term corresponds to the instantaneous death of E.
coli colonies, and the delay and neutral delay terms correspond to
the asynchronous and synchronous growth of E. coli colonies,
respectively.

Synchronous cultures have been analyzed by Engelberg and Hirsch
[10, pp. 14—37]: They note that the degree of synchronization of cells in
a synchronous culture decreases with time, so that the culture ap-
proaches ‘steady exponential growth’. They also comment that

‘‘2 the growth curve needs to be analyzed during the period of
the decay of synchronization of cell division; the greater the degree of
(initial) synchronization of the culture, the greater the accuracy with
which the doubling-time distribution can be calculated from the
growth data.’’

5 Further work

Mathematical modelling is more of an art than a precise science.
Whilst the initial choice of mathematical model may be strongly
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Fig. 6a–d. A synchronous culture of E. coli K12j F~ cells was prepared by loading
2]1010 cells from an exponential culture into a 15 ml tube. The cells were then
centrifuged at 2500 g for 20 minutes and the top 2% of cells suspended in fresh growth
medium. The graphs represent. a the exponential growth model, and the time-lag
growth model fitting b q

#%--
, c q

#%--
, o

0
and o

1
, and d q

#%--
, o

0
, o

1
, o

2
and b.
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Fig. 6a–d. Continued

influenced by the pattern of cell growth, the precise development of the
model hierarchy depends on intuition and deductions based on the
nature of the experimental data and the biological processes being
modelled. Whilst the models in this paper are, in some respects, quite
simple because they only have a single, constant time-lag, more
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complicated models can be developed that include separate time-lags
for each stage of the cell-division process, or that have state-dependent
time-lags that model environmental conditions such as the temper-
ature, the level of nutrients, etc.

For a highly synchronized synchronous culture, an alternative to
the bell-shaped initial function might be used, for example, one chosen
solely for its qualitative properties (see Fig. 5b). In fact, it is possible to
develop a hierarchy of initial functions that is independent of the model
hierarchy. For example, for the E. coli growth, the observation that
only a small proportion of E. coli colonies divide during the first
interval suggests that the inclusion of the parameter b in the model is of
some importance. (However, such an observation should not be unex-
pected because, as we have already noted, the synchronization process
generally damages the cell culture so that the initial cell growth is
usually less than predicted.)

Whilst we have used the least-squares objective function for deter-
mining the best-fit parameter values, there are many alternative objec-
tive functions: The weighted least-squares objective function can be
used to take account of the relative significance of each datum, with
small weights being assigned to data with (suspected) large errors and
vice-versa. Alternatively, if there is considerable variation in scale
between the experimental data, an objective function based on the
relative error in fitting the data might be used. If the experimental data
has significant qualitative features, then an objective function that also
takes account of the rate of change of the data might be considered, in
an attempt to preserve the ‘shape’ of the discrete data.

6 Conclusion

The work reported here provides scope for further analysis of suitable
experimental data.

Sometimes a good qualitative but relatively poor quantitative
model may be preferred to a good quantitative but relatively poor
qualitative model. However, for idealized experimental data,7 a good
qualitative and quantitative model should exist. The determination of
such a model is extremely difficult, if not impossible, but simple models
can be progressively improved to take account of various qualitative

—————
7 In an ideal situation, there would be no variation in the conditions of the experiment
and all aspects of the experiment could be measured precisely (without affecting the
experiment).
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features of the data and a better understanding of the processes being
modelled. However, in order for (quantitative) mathematical modelling
to be successful, it is necessary to have access to suitable raw experi-
mental data. For example, data relating to the transient phases of the
model is typically required for estimating kinetic parameters.

The increased complexity of the time-lag growth models seems to
be justified, with the model parameters corresponding to experi-
mentally measurable and controllable growth characteristics, and the
models consistently providing better qualitative and quantitative fits
to the data. However, it should be noted that the exponential growth
model and the time-lag growth models form part of the same hierarchy
of related models. In this hierarchy, estimates of parameters obtained
from simpler models can be used as initial parameter estimates in more
complex models. Thus the estimate of q

#6-563%
from the exponential

growth model can be used as an initial estimate for q
#%--

in the time-lag
growth models.
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4. Baker, C. T. H., Paul, C. A. H., Willé, D. R.: Issues in the numerical solution of
evolutionary delay differential equations. Adv. Comp. Math. 3, 171—196 (1995)

5. Baker, M. F. L., Sanger, L. J., Rodgers, R. W., Jabboury, K., Mangini, O. R.: Cell
proliferation kinetics of normal and tumour tissue in vitro: Quiescent reproductive
cells and the cycling reproductive fraction. Cell Prolif. 28, 1—15 (1995)

6. Bard, Y.: Nonlinear parameter estimation. New York: Academic Press 1974
7. Bocharov, G. A., Romanyukha, A. A.: Mathematical model of antiviral immune-

response-III — Influenza-A virus-infection. J. theor. Biol. 167, 323—360 (1994)
8. Busenberg, S. A., Cooke, K. L.: Periodic solutions of delay differential equations

arising in some models of epidemics. In: Proceedings of applied nonlinear analysis
conference, Univ. of Texas, New York: Academic Press 1978

Modelling time-lags in cell proliferation 369



9. Cain, S. J., Chau, P. C.: Transition probability cell cycle model part I — Balanced
growth. J. theor. Biol. 185, 55—67 (1997)

10. Cameron, I. L., Padilla, G. M.: Cell synchrony. Studies in biosynthetic regulation.
New York: Academic Press 1966

11. Cantrell, D. A., Smith, K. A.: The Interleukin-2 T-cell system — A new cell-growth
model. Science 224, 1312—1316 (1984)

12. Cantrell, D. A., Smith, K. A.: Transient expression of Interleukin-2 receptors
— Consequences for T-cell growth. J. exp. Med. 158, 1895—1911 (1983)

13. Chiu, C., Hoppensteadt, F. C.: A particle method for population shock waves with
application to synchronization of bacterial culture growth. In: Proceedings of first
world congress of nonlinear analysts, Tampa, Florida. Berlin: de Gruyter 1992

14. Gong, J., Li, X., Traganos, F., Darzynkiewicz, Z.: Expression of G(1) and G(2)
cyclins measured in individual cells by multiparameter flow-cytometry — A new
tool in the analysis of the cell-cycle. Cell Prolif. 27, 357—371 (1994)

15. Hoppensteadt, F., Izhikevich, E.: Weakly connected neural networks. Berlin:
Springer-Verlag 1997

16. Jonassen, T. S., Seglen, P. O., Stokke, T.: The fraction of cells in G(1) with bound
retinoblastoma protein increases with the duration of the cell-cycle. Cell Prolif. 27,
95—104 (1994)

17. Kuang, Y.: Delay differential equations with applications in population dynamics.
Boston: Academic Press 1993

18. Marchuk, G. I., Petrov, R. V., Romanyukha, A. A., Bocharov, G. A.: Mathemat-
ical-model of antiviral immune-response 1. Data-analysis, generalized picture
construction and parameter evaluation for Hepatitis-B. J. theor. Biol. 151, 1—40
(1991)

19. Marusic, M., Bajzer, Z., Freyer, J. P., Vukpavlovic, S.: Analysis of growth of
multicellular tumor spheroids by mathematical models. Cell Prolif. 27, 73—94
(1994)

20. McLean, A. R.: T-memory cells in a model of T-cell memory. In: A. S. Perelson et
al.: Theoretical and experimental insights into immunology (NATO ASI series,
vol. H66, pp. 149—162) Berlin: Springer-Verlag 1992

21. Metz, J. A. J., Diekmann, O.: The dynamics of physiologically structured popula-
tions. Lect. Notes Biomath. Berlin: Springer-Verlag 1986

22. Mitchison, J. M., Vincent, W. S.: A method of making synchronous cell cultures by
density gradient centrifugation. In: I.L. Cameron et al.: Cell synchrony. Studies in
biosynthetic regulation. New York: Academic Press 1966

23. Morel, B. F., Kalagnanam, J., Morel, P. A.: Mathematical modelling of Th1-Th2
dynamics. In: A. S. Perelson et al.: Theoretical and experimental insights into
immunology (NATO ASI series, vol. H66, pp. 171—191) Berlin: Springer-Verlag
1992

24. Moreno, S., Nurse, P.: Regulation of progression through the G1 phase of the
cell-cycle by the rum1(#) gene. Nature 367, 236—242 (1994)

25. Moskophidis, D., Lechner, F., Pircher, H., Zinkernagel, R. M.: Virus persistence in
acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic
effector T-cells. Nature 362, 758—761 (1993)

26. Novak, B., Tyson, J. J.: Quantitative analysis of a molecular model of mitotic
control in fission yeast. J. theor. Biol. 173, 283—306 (1995)

27. Oden, J. T., Zohdi, T., Cho, J.-R.: Hierarchical modelling. A posteriori error
estimation and adaptive methods in computational mechanics. In: Computational
methods in applied sciences (pp. 37—47). New York: Wiley 1996

370 C. T. H. Baker et al.



28. Paul, C. A. H.: A user-guide to Archi — An explicit Runge—Kutta code for solving
delay and neutral differential equations and parameter estimation problems.
MCCM report 283, ISSN 1360—1725, University of Manchester 1997

29. Ratkowsky, D. A.: Nonlinear Regression Modeling: A Unified Practical Approach.
New York: Marcel Dekker 1983

30. Santisteban, M. S., Brugal, G.: Image-analysis of in-situ cell-cycle related changes
of PCNA and KI-67 proliferating antigen expression. Cell Prolif. 27, 435—453
(1994)

31. Sherley, J. L., Stadler, P. B., Stadler, J. S.: A quantitative method for analysis of
mammalian cell proliferation in culture in terms of dividing and non-dividing cells.
Cell Prolif. 28, 137—144 (1995)

32. Sinko, J. W., Streifer, W.: A model for populations reproducing by fission. Ecol. 52,
330—335 (1971)

33. Smith, H. L.: Reduction of structured population models to threshold-type delay
equations and functional differential equations: A case study. Math. Biosci. 113,
1—23 (1993)

34. Smith, J. A., Martin. L.: Do cells cycle?. Proc. Natl. Acad. Sci. USA 70, 1263—1267
(1973)

35. Smith, K. A.: Interleukin-2 — Inception, impact and implications. Science 240,
1169—1176 (1988)

36. Sidorov, I. A., Romanyukha, A. A.: Mathematical modelling of T-cell proliferation.
Mathematical Biosciences 115, 187—232 (1993)

37. Talavera, F., Bergman, C., Pearl, M. L., Connor, P., Roberts, J. A., Menon,
K. M. J.: cAMP and PMA enhance the effects of IGF-I in the proliferation of
endometrial adenocarcinoma cell line HEC-1-A by acting at the G

1
-phase of the

cell cycle. Cell Prolif. 28, 121—136 (1995)
38. Zennaro, M.: Natural continuous extensions of Runge—Kutta methods. Math.

Comput. 46, 119—133 (1986)

Modelling time-lags in cell proliferation 371


