ECUACIONES DIFERENCIALES PARCIALES

SOLUCIÓN AL PROBLEMA DE CAUCHY PARA LA ECUACIÓN DE ONDA EN \mathbb{R}^n Y EL MÉTODO DEL DESCENSO DE HADAMARD (SECCIÓN 2).

10/10/2023

RAMÓN G. PLAZA

1. Solución a la ecuación de onda en \mathbb{R}^n

La fórmula de Poisson vista en clase, que determina la solución de la ecuación de onda en dimensión n=2,

$$u(x,t) = \frac{t}{2\pi} \int_{B_1(0)} \frac{g(x+ct\eta)}{\sqrt{1-|\eta|^2}} d\eta + \frac{\partial}{\partial t} \left(\frac{t}{2\pi} \int_{B_1(0)} \frac{f(x+ct\eta)}{\sqrt{1-|\eta|^2}} d\eta \right)$$
(1)
$$= \frac{1}{2\pi c} \int_{B_{ct}(x)} \frac{g(y)}{\sqrt{c^2 t^2 - |x-y|^2}} dy + \frac{\partial}{\partial t} \left(\frac{1}{2\pi c} \int_{B_{ct}(x)} \frac{f(y)}{\sqrt{c^2 t^2 - |x-y|^2}} dy \right),$$

es consecuencia de considerar la solución en dimensión n=3, la cual está determinada por la fórmula de Kirchhoff,

$$u(x,t) = \frac{\partial}{\partial t} \left(\frac{t}{4\pi} \int_{|\eta|=1} f(x + ct\eta) dS_{\eta} \right) + \frac{t}{4\pi} \int_{|\eta|=1} g(x + ct\eta) dS_{\eta}$$

$$= \frac{\partial}{\partial t} \left(\frac{1}{4\pi c^{2}t} \int_{|x-y|=ct} f(y) dS_{y} \right) + \frac{1}{4\pi c^{2}t} \int_{|x-y|=ct} g(y) dS_{y},$$
(2)

con $x \in \mathbb{R}^3$, t > 0. Es decir, "descendimos" una dimensión para resolver en la dimensión (par) precedente. A esto se le conoce como *el método del descenso de Hadamard*. En esta nota vamos a extrapolar este método para encontrar la fórmula en dimensión par arbitraria a partir de la solución en dimensión impar. Recordamos la ecuación de Euler-Poisson-Darboux vista en clase,

$$U_{tt} - c^2 \left(U_{rr} + \frac{n-1}{r} U_r \right) = 0, \tag{3}$$

para todo $(r,t) \in (0,\infty) \times (0,\infty), x \in \mathbb{R}^n$ fijo, con condiciones iniciales

$$U(x, r, 0) = F(x, r), U_t(x, r, 0) = G(x, r),$$
 (4)

para la media esférica U(x, r, t) de cualquier solución u = u(x, t) a la ecuación de onda homogénea con condiciones iniciales u(x, 0) = f(x) y $u_t(x, 0) = g(x)$. (Aquí F y G denotan a las medias esféricas de f y g, respectivamente.) Asimismo, toda media esférica satisface la ecuación de Darboux,

$$F_{rr} + \frac{(n-1)}{r} F_r - \Delta_x F = 0. {5}$$

Para encontrar la fórmula de Poisson, hacemos notar que cuando n=3, una transformación nos permite reducir la ecuación de Euler-Poisson-Darboux para la media esférica a la ecuación de onda en una dimensión para r>0 y t>0 con valores en la frontera en r=0. Aplicando el método de reflexión se obtiene la fórmula de Kirchhoff. En dimensión impar arbitraria también existe una transformación con la misma propiedad. Para definirla necesitamos algunos resultados preliminares.

1.1. Lemas auxiliares.

Lema 1.1. Para cada $k \ge 1$ se tiene que

$$\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1}(r^{2k+m-1}) = C(k,m)r^{1+m},\tag{6}$$

 $en \ r \in (0, \infty), \ donde \ m \geq 0 \ y$

$$C(k,m) = \begin{cases} 1, & k = 1, \\ \prod_{j=1}^{k-1} (2j+1+m), & k \ge 2, \end{cases}$$

es una constante.

Demostración. Procedemos por inducción. La identidad (6) es obvia sik=1. Si k=2 entonces

$$\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1}(r^{2k+m-1}) = \left(\frac{1}{r}\frac{d}{dr}\right)(r^{3+m}) = (3+m)r^{1+m} = C(2,m)r^{1+m} = C(k,m)r^{1+m},$$

para cualquier $m \geq 0$. Suponiendo que (6) es cierta para toda $m \geq 0$ con $k \geq 2$ entonces calculamos

$$\left(\frac{1}{r}\frac{d}{dr}\right)^{k} (r^{2(k+1)+m-1}) = \left(\frac{1}{r}\frac{d}{dr}\right) \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} (r^{2k+(m+2)-1})$$

$$= C(k, m+2) \left(\frac{1}{r}\frac{d}{dr}\right) (r^{3+m})$$

$$= C(k, m+2)(3+m)r^{1+m}$$

$$= C(k+1, m)r^{1+m},$$

por lo cual la identidad (6) también es cierta para k + 1.

Lema 1.2. Sea $\varphi \in C^{k+1}(0,\infty)$, con $k \geq 1$, una función escalar. Entonces, para cada $k \geq 1$ se tiene que

$$\left(\frac{d^2}{dr^2}\right)\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1}\left(r^{2k-1}\varphi(r)\right) = \left(\frac{1}{r}\frac{d}{dr}\right)^k\left(r^{2k}\varphi'(r)\right),\tag{7}$$

y además,

$$\left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}\varphi(r)\right) = \sum_{j=0}^{k-1} \beta_j^{(k)} r^{1+j} \frac{d^j \varphi}{dr^j},\tag{8}$$

donde las constantes $\beta_i^{(k)}$ son independientes de φ , y

$$\beta_0^{(k)} = 1 \cdot 3 \cdot 5 \cdot (\cdots) \cdot (2k-1).$$

Demostración. Supongamos que φ es un monomio de la forma $\varphi(r) = r^m$, con $m \ge 0$. Por el lema 1.1, el lado izquierdo de (7) es

$$\left(\frac{d^2}{dr^2}\right) \left(\frac{1}{r} \frac{d}{dr}\right)^{k-1} \left(r^{2k-1} r^m\right) = C(k,m) \left(\frac{d^2}{dr^2} r^{1+m}\right) = m(1+m) C(k,m) r^{m-1},$$

mientras que el lado derecho de (7) es

$$\left(\frac{1}{r}\frac{d}{dr}\right)^k \left(mr^{2k}r^{m-1}\right) = m\left(\frac{1}{r}\frac{d}{dr}\right) \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} (r^{2k+m-1})$$

$$= m\left(\frac{1}{r}\frac{d}{dr}\right) (C(k,m)r^{1+m})$$

$$= m(1+m)C(k,m)r^{m-1}.$$

Por lo tanto la identidad (7) es cierta para $\varphi = r^m$ y por linealidad, también es cierta para cualquier polinomio. Asimismo, es fácil demostrar (ver ejercicio ??) que ambos lados de la identidad (7) son cero en $r = r_0$ si φ y todas sus derivadas de orden $\leq k+1$ se anulan en r_0 . Expandiendo en Taylor alrededor de cualquier punto r_0 arbitrario podemos escribir $\varphi = P + R$, donde P es un polinomio y R se anula a orden k+1 en r_0 . Por lo tanto la identidad (7) es válida para cualquier $\varphi \in C^{k+1}$.

De esta forma, definimos el operador $L_k: C^{k+1}(\mathbb{R}) \to C^2(\mathbb{R})$ mediante

$$(L_k\varphi)(r) := \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} (r^{2k-1}\varphi(r)). \tag{9}$$

(Es fácil demostrar, por inducción, que para cada $k \geq 1$ el rango de L_k es $\mathcal{R}(L_k) = C^2(\mathbb{R})$.) Expandiendo el lado derecho de (7), notamos que podemos escribir (7) de la siguiente manera:

$$\frac{d^2}{dr^2}(L_k\varphi)(r) = L_k\left(\left(\frac{d^2}{dr^2} + \frac{2k}{r}\frac{d}{dr}\right)\varphi(r)\right)$$
(10)

La identidad (8) se puede escribir como

$$(L_k\varphi)(r) = \sum_{j=0}^{k-1} \beta_j^{(k)} r^{1+j} \frac{d^j \varphi}{dr^j}.$$

Para demostrarla procedemos por inducción. Claramente $(L_1\varphi)(r) = r\varphi(r)$, por lo que (8) es cierta con $\beta_0^{(1)} = 1$. Verificamos también que

$$(L_2\varphi)(r) = \left(\frac{1}{r}\frac{d}{dr}\right)(r^3\varphi(r)) = 3r\varphi(r) + r^3\varphi'(r),$$

por lo que la identidad se cumple con $\beta_0^{(2)}=3,\ \beta_1^{(2)}=1$ (independientes de φ). Suponiendo que (8) es cierta para $k\geq 1,$ con $\beta_0^{(k)}=1\cdot 3\cdot 5\cdot (\cdots)(2k-1)$ obtenemos

$$(L_{k+1}\varphi)(r) = \left(\frac{1}{r}\frac{d}{dr}\right)^k \left(r^{2(k+1)-1}\varphi(r)\right)$$

$$= \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left((2(k+1)-1)r^{2k-1}\varphi(r) + r^{2k}\varphi'(r)\right)$$

$$= (2(k+1)-1)(L_k\varphi)(r) + (L_k(r\varphi'))(r)$$

$$= (2(k+1)-1)\sum_{j=0}^{k-1}\beta_j^{(k)}r^{1+j}\frac{d^j\varphi}{dr^j} + \sum_{j=0}^{k-1}\beta_j^{(k)}r^{1+j}\frac{d^j\varphi}{dr^j}(r\varphi'(r))$$

$$= \sum_{j=0}^k \beta_j^{k+1}r^{1+j}\frac{d^j\varphi}{dr^j},$$

donde los coeficientes $\beta_j^{(k+1)}$ no dependen de φ y $\beta_0^{(k+1)} = (2(k+1)-1)\beta_0^{(k)}$. \square

1.2. Solución para n impar. Supongamos que la dimensión del espacio físico es impar,

$$n = 2k + 1,$$

con $k \geq 1$ (es decir, $n \geq 3$). Sea $u \in C^{k+1}(\mathbb{R}^n \times (0,\infty)) \cap C(\mathbb{R}^n \times [0,\infty))$ una solución del problema de Cauchy

$$u_{tt} - c^2 \Delta u = 0, \qquad x \in \mathbb{R}^n, \ t > 0, \tag{11}$$

$$u(x,0) = f(x), \quad u_t(x,0) = g(x), \qquad x \in \mathbb{R}^n.$$
 (12)

Definimos, para r > 0, t > 0, las medias esféricas

$$U(x,r,t) = \int_{\partial B_r(x)} u(y,t) \, dS_y,$$

$$F(x,r) = \oint_{\partial B_r(x)} f(y) \, dS_y, \qquad G(x,r) = \oint_{\partial B_r(x)} g(y) \, dS_y,$$

así como la transformación,

$$\tilde{U}(x,r,t) := (L_k U)(x,r,t) = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}U(x,r,t)\right),$$

$$\tilde{F}(x,r) := (L_k F)(x,r) = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}F(x,r)\right),$$

$$\tilde{G}(x,r) := (L_k G)(x,r) = \left(\frac{1}{r}\frac{d}{dr}\right)^{k-1} \left(r^{2k-1}G(x,r)\right).$$
(13)

Esta transformación se reduce a $\tilde{F} = rF$ cuando k = 1. Claramente,

$$\tilde{U}(x,r,0) = \tilde{F}(x,r), \qquad \tilde{U}(x,r,0) = \tilde{G}(x,r). \tag{14}$$

Lema 1.3. Si $u \in C^{k+1}(\mathbb{R}^n \times (0,\infty)) \cap C(\mathbb{R}^n \times [0,\infty))$ es solución del problema de Cauchy (11) - (12) entonces $\tilde{U}(x,\cdot,\cdot) \in C^2((0,\infty) \times (0,\infty))$ para cada $x \in \mathbb{R}^n$

fijo, y además es solución de

$$\tilde{U}_{tt} - c^2 \tilde{U}_{rr} = 0, r > 0, t > 0,
\tilde{U}(x, r, 0) = \tilde{F}(x, r), \tilde{U}_t(x, r, 0) = \tilde{G}(x, r), r > 0, (15)
\tilde{U}(x, 0, t) = 0, t > 0.$$

Demostración. Aplicamos el lema 1.2 y la ecuación de Euler-Poisson-Darboux (3) para calcular:

$$\tilde{U}_{rr} = \frac{\partial^2}{\partial r^2} (L_k U) \underset{(10)}{=} L_k \left(U_{rr} + \frac{2k}{r} U_r \right)$$

$$= \underset{n=2k+1}{=} \left(\frac{1}{r} \frac{\partial}{\partial r} \right)^{k-1} \left(r^{2k-1} \left(U_{rr} + \frac{n-1}{r} U_r \right) \right)$$

$$= \frac{1}{c^2} \left(\frac{1}{r} \frac{\partial}{\partial r} \right)^{k-1} \left(r^{2k-1} U_{tt} \right)$$

$$= \frac{1}{c^2} (L_k U_{tt}) = \frac{1}{c^2} \tilde{U}_{tt}.$$

Por (14) se satisfacen las condiciones iniciales y además

$$\tilde{U}(x,0,t) = (L_k U)(x,0,t) = \left(\sum_{j=0}^{k-1} \beta_j^{(k)} r^{1+j} \frac{d^j U}{dr^j}(x,r,t)\right)_{|r=0} = 0.$$

De este modo, podemos resolver el problema (15) mediante el método de reflexión. Para ct>r>0 el resultado es

$$\tilde{U}(x,r,t) = \frac{1}{2}\tilde{F}(x,ct+r) - \frac{1}{2}\tilde{F}(x,ct-r) + \frac{1}{2c}\int_{ct-r}^{ct+r} \tilde{G}(x,\rho) \,d\rho.$$

Sabemos que $u(x,t) = \lim_{r\to 0^+} U(x,r,t)$, por lo que, usando el lema 1.2:

$$\tilde{U}(x,r,t) = (L_k U)(x,r,t) \underset{(8)}{=} = \beta_0^{(k)} r U(x,r,t) + \sum_{i=1}^{k-1} \beta_j^{(k)} r^{1+j} \frac{\partial^j U}{\partial r^j}(x,r,t),$$

de modo que

$$\lim_{r \to 0^+} \frac{\tilde{U}(x,r,t)}{r\beta_0^{(k)}} = \lim_{r \to 0^+} U(x,r,t) + \underbrace{\lim_{r \to 0^+} \sum_{j=1}^{k-1} \frac{\beta_j^{(k)}}{\beta_0^{(k)}} r^j \frac{\partial^j U}{\partial r^j}(x,r,t)}_{=0} = u(x,t).$$

Sustituyendo la solución para \tilde{U} se llega a que,

$$\begin{split} u(x,t) &= \lim_{r \to 0^+} \frac{1}{\beta_0^{(k)}} \left(\frac{\tilde{F}(x,ct+r) - \tilde{F}(x,ct-r)}{2r} + \frac{1}{2cr} \int_{ct-r}^{ct+r} \tilde{G}(x,\rho) \, d\rho \right) \\ &= \frac{1}{\beta_0^{(k)}} \left(\tilde{F}_r(x,ct) + \frac{1}{c} \tilde{G}(x,ct) \right) \\ &= \frac{1}{c} \frac{1}{\beta_0^{(k)}} \left(\frac{\partial}{\partial t} \tilde{F}(x,ct) + \tilde{G}(x,ct) \right). \end{split}$$

Definimos

$$\gamma_n := \beta_0^{(k)} = \beta_0^{(\frac{1}{2}(n-1))} = 1 \cdot 3 \cdot 5 \cdot (\cdots)(n-2).$$

Finalmente observamos que, para cualquier función $\varphi = \varphi(r)$, si definimos $\tilde{\varphi}(r) := (L_k \varphi)(r)$ entonces

$$\tilde{\varphi}(ct) = \left(\frac{1}{c^2t}\frac{\partial}{\partial t}\right)^{k-1} \left((ct)^{2k-1}\varphi(ct)\right) = c\left(\frac{1}{t}\frac{\partial}{\partial t}\right)^{k-1} \left(t^{2k-1}\varphi(ct)\right).$$

Por ende, sustituyendo $\tilde{F}(x,ct),\,\tilde{G}(x,ct)$ y n=2k+1, obtenemos

$$u(x,t) = \frac{1}{\gamma_n} \frac{\partial}{\partial t} \left(\left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{(n-3)/2} \left(\frac{1}{\omega_n c^{n-1} t} \int_{\partial B_{ct}(x)} f(y) \, dS_y \right) \right) + \frac{1}{\gamma_n} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{(n-3)/2} \left(\frac{1}{\omega_n c^{n-1} t} \int_{\partial B_{ct}(x)} g(y) \, dS_y \right),$$

$$(16)$$

con $\gamma_n = 1 \cdot 3 \cdot 5 \cdot (\cdots)(n-2)$, $n \ge 3$ impar, y para todo $x \in \mathbb{R}$, t > 0. De la fórmula (16) observamos inmediatamente que:

- Si n=3 entonces $\gamma_3=1, \,\omega_3=4\pi$ y recuperamos la fórmula de Kirchhoff (2).
- Para determinar el valor de u = u(x,t), en cualquier dimensión impar $n \ge 3$ sólo precisamos información de f, g y sus derivadas en la superficie de la bola de radio ct > 0 y centro en x,

$$\partial B_{ct}(x) = \{ y \in \mathbb{R}^n : |x - y| = ct \},\$$

y no en el interior de la misma. Es decir, el principio fuerte de Huygens también es válido en cualquier dimensión impar.

Teorema 1.4 (Solución para n impar). Sea $n \geq 3$ impar, n = 2k + 1, $k \geq 1$. Sean $f \in C^{m+1}(\mathbb{R}^n)$, $g \in C^m(\mathbb{R}^n)$, donde $m = \frac{1}{2}(n+1) \in \mathbb{Z}_+$. Definimos u = u(x,t) mediante la fórmula (16). Entonces:

- (a) $u \in C^2(\mathbb{R}^n \times (0, \infty))$.
- (b) u es solución de la ecuación de onda (11).
- (c) Para todo $x_0 \in \mathbb{R}^n$,

$$\lim_{(x,t)\to(x_0,0)} u(x,t) = f(x_0), \qquad \lim_{(x,t)\to(x_0,0)} u_t(x,t) = g(x_0).$$

Demostración. Por hipótesis, $f \in C^{m+1}(\mathbb{R}^n)$, $g \in C^m(\mathbb{R}^n)$, por regularidad de las medias esféricas y dado que el rango del operador $L_k = L_{(n-1)/2}$ es C^2 , es fácil reconocer que la fórmula (16) es de clase $C^2(\mathbb{R}^n \times (0, \infty))$. Denotemos

$$v(x,t) := (t^{-1}\partial_t)^{(n-3)/2} (t^{n-2}G(x,ct)),$$

$$w(x,t) := (t^{-1}\partial_t)^{(n-3)/2} (t^{n-2}F(x,ct)),$$

de modo que la solución (16) se puede escribir como

$$u(x,t) = \gamma_n^{-1}(v + \partial_t w).$$

Por la ecuación de Darboux (5), el lema 1.2 y los cálculos de la prueba del lema 1.3, podemos calcular

$$\begin{split} \Delta_x v &= \left(t^{-1} \partial_t\right)^{(n-3)/2} \left(t^{n-2} \Delta_x G(x,ct)\right) \\ &= \left(t^{-1} \partial_t\right)^{(n-3)/2} \left(t^{n-2} G_{rr}(x,ct) + (n-1)c^{-1} t^{n-3} G_r(x,ct)\right) \\ &= \left(t^{-1} \partial_t\right)^{(n-3)/2} \left(t^{n-2} c^{-2} \partial_t^2 G(x,ct) + (n-1)c^{-2} t^{n-3} \partial_t G(x,ct)\right) \\ &= c^{-2} \left(t^{-1} \partial_t\right)^{(n-1)/2} \left(t^{n-1} \partial_t G(x,ct)\right) \\ &= c^{-2} \partial_t^2 (t^{-1} \partial_t)^{(n-3)/2} (t^{n-2} G(x,ct)) \\ &= c^{-2} v_{tt}, \end{split}$$

por lo que este término satisface la ecuación de onda. Análogamente, w satisface la ecuación de onda. En consecuencia $\partial_t w$ también. Concluímos que

$$u_{tt} - c^2 \Delta u = 0.$$

Finalmente, por el lema 1.2, propiedad (8) podemos escribir

$$u(x,t) = \partial_t \left(tF(x,ct) + \frac{\beta_1}{\beta_0} t^2 \partial_t F(x,ct) + O(c^3 t^3) \right) + tG(x,ct) + O(c^2 t^2)$$

= $F(x,ct) + \frac{\beta_0 + 2\beta_1}{\beta_0} t \partial_t F(x,ct) + tG(x,ct) + O(c^2 t^2).$

Claramente, tomando el límite cuando $t \to 0^+$ obtenemos u(x,0) = F(x,0) = f(x). Análogamente, $u_t(x,0) = G(x,0) = g(x)$, ya que $\partial_t F(x,0) = 0$. Hemos demostrado el teorema.

1.3. Solución para n par: el método del descenso de Hadamard. Sea ahora $n \geq 2$ par, con $n = 2k, k \geq 1$. Supongamos que $u \in C^m(\mathbb{R}^n \times (0, \infty))$, con $m = \frac{1}{2}(n+2) \in \mathbb{Z}_+$, es solución de

$$u_{tt} - c^2 \Delta u = 0,$$
 $x \in \mathbb{R}^n, \ t > 0,$
 $u(x,0) = f(x), \quad u_t(x,0) = g(x),$ $x \in \mathbb{R}^n.$ (17)

Entonces definimos

$$\tilde{u}(x_1, \dots, x_n, x_{n+1}, t) := u(x_1, \dots, x_n, t), \qquad x \in \mathbb{R}^{n+1}, t > 0,
\tilde{f}(x_1, \dots, x_n, x_{n+1}) := f(x_1, \dots, x_n),
\tilde{g}(x_1, \dots, x_n, x_{n+1}) := g(x_1, \dots, x_n), \qquad x \in \mathbb{R}^{n+1},$$
(18)

de modo que $\tilde{u} = \tilde{u}(x,t)$ resuelve la ecuación de onda homogénea en $x \in \mathbb{R}^{n+1}$, t > 0, con condiciones iniciales $\tilde{u}(x,0) = \tilde{f}(x)$ y $\tilde{u}_t(x,0) = \tilde{g}(x)$. Si $x \in \mathbb{R}^n$, t > 0, se define

$$\tilde{x} := (x_1, \dots, x_n, 0) \in \mathbb{R}^{n+1}.$$

Sustituyendo \tilde{x} y $\tilde{n}:=n+1$ en la fórmula (16) de la solución para dimensión impar obtenemos

$$\begin{split} \tilde{u}(\tilde{x},t) &= u(x,t) = \frac{1}{\gamma_{n+1}} \left(\frac{\partial}{\partial t} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{(n-2)/2} \left(t^{n-1} \oint_{\partial B_{ct}(\tilde{x})} \tilde{f}(y) \, dS_y \right) \right) \\ &+ \frac{1}{\gamma_{n+1}} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{(n-2)/2} \left(t^{n-1} \oint_{\partial B_{ct}(\tilde{x})} \tilde{g}(y) \, dS_y \right). \end{split}$$

Las integrales de superficie se calculan sobre la frontera de la bola con centro en \tilde{x} y radio ct > 0, la cual es una hipersuperficie en \mathbb{R}^{n+1} :

$$\partial B_{ct}(\tilde{x}) = \{ y \in \mathbb{R}^{n+1} : |\tilde{x} - y| = ct \},$$

y con $\omega_{\tilde{n}} = \omega_{n+1}$. Para $y_{n+1} \geq 0$ la frontera $\partial B_{ct}(\tilde{x})$ en \mathbb{R}^{n+1} es la gráfica de la función

$$\psi(z) := +\sqrt{c^2t^2 - |x - z|^2}, \qquad \psi : \mathbb{R}^n \to \mathbb{R}, \quad z \in B_{ct}(x) \subset \mathbb{R}^n.$$

Para $y_{n+1} \leq 0$, $\partial B_{ct}(\tilde{x})$ es la gráfica de $-\psi(z)$, con $z \in B_{ct}(x)$. De este modo el mapeo $\mathbb{R}^n \ni z \mapsto (z_1, \dots, z_n, \pm \psi(z))$ transforma las integrales de superficie en integrales en el interior de la bola en \mathbb{R}^n . El elemento de superficie es

$$dS_y = (1 + |\nabla \psi(z)|^2)^{1/2} dz.$$

Por simetría con respecto a y_{n+1} (ya que \tilde{f} y \tilde{g} no dependen de y_{n+1}), integrando los dos hemosferios obtenemos:

$$\int_{\partial B_{ct}(\tilde{x}) \subset \mathbb{R}^{n+1}} \tilde{f}(y) \, dS_y = 2 \int_{B_{ct}(x) \subset \mathbb{R}^n} f(z) (1 + |\nabla \psi(z)|^2)^{1/2} dz.$$

Claramente,

$$\psi_{x_j} = -\frac{z_j - x_j}{\sqrt{c^2 t^2 - |z - x|^2}}, \quad (1 + |\nabla \psi(z)|^2)^{1/2} = \frac{ct}{\sqrt{c^2 t^2 - |z - x|^2}};$$

por lo tanto

$$\oint_{\partial B_{ct}(\tilde{x})} \tilde{f}(y) dS_y = \frac{2}{\omega_{n+1}(ct)^{n-1}} \int_{|x-z| < ct} f(z) dz.$$

Sustituyendo obtenemos la fórmula de la solución en dimensión par:

$$u(x,t) = \frac{1}{\gamma_{n+1}} \frac{2}{\omega_{n+1} c^{n-1}} \frac{\partial}{\partial t} \left(\left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{(n-2)/2} \int_{B_{ct}(x)} \frac{f(y)}{\sqrt{c^2 t^2 - |x - y|^2}} dy \right) + \frac{1}{\gamma_{n+1}} \frac{2}{\omega_{n+1} c^{n-1}} \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{(n-2)/2} \int_{B_{ct}(x)} \frac{g(y)}{\sqrt{c^2 t^2 - |x - y|^2}} dy,$$
(19)

donde $\gamma_{n+1} = 1 \cdot 3 \cdot 5 \cdot (\cdots)(n-1)$, para $x \in \mathbb{R}^n$, t > 0, $n \ge 2$, par. De la fórmula (19) se sigue inmediatamente que:

- Si n=2 entonces $\gamma_3=1$ y $\omega_3=4\pi$ y la fórmula (19) se reduce a la fórmula de Poisson (1).
- El valor de u en $(x,t) \in \mathbb{R}^n \times (0,\infty)$ depende de las integrales de f y g en el interior de la bola $B_{ct}(x)$. Por lo tanto, en dimensión par el principio fuerte de Huygens, al igual que en dimensión n=2 (fórmula de Poisson), no es válido.

Si se considera que la solución en \mathbb{R}^n es un caso particular del problema en \mathbb{R}^n que no depende de la última coordenada entonces el siguiente teorema es una consecuencia del teorema 1.4 y dejamos su demostración como ejercicio.

Teorema 1.5 (Solución para n par). Sea $n \geq 2$ par, n = 2k, $k \geq 1$. Sean $f \in C^{m+1}(\mathbb{R}^n)$, $g \in C^m(\mathbb{R}^n)$, donde $m = \frac{1}{2}(n+2) \in \mathbb{Z}_+$. Definimos u = u(x,t) mediante la fórmula (19). Entonces:

- (a) $u \in C^2(\mathbb{R}^n \times (0, \infty))$.
- (b) u es solución de la ecuación de onda (17).

(c) Para todo $x_0 \in \mathbb{R}^n$,

$$\lim_{(x,t)\to(x_0,0)} u(x,t) = f(x_0), \qquad \lim_{(x,t)\to(x_0,0)} u_t(x,t) = g(x_0).$$

Este material se puede encontrar en el libro de Evans [1].

REFERENCIAS

[1] L. C. Evans, *Partial differential equations*, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.

INSTITUTO DE INVESTIGACIONES EN MATEMÁTICAS APLICADAS Y EN SISTEMAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIRCUITO ESCOLAR S/N, C.P. 04510 Cd. DE MÉXICO (MÉXICO) Email address: plaza@mym.iimas.unam.mx