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Abstract

This paper considers an ideal nonthermal elastic medium described by a
stored-energy function W . It studies time-dependent configurations with subson-
ically moving phase boundaries across which, in addition to the jump relations
(of Rankine–Hugoniot type) expressing conservation, some kinetic rule g acts as
a two-sided boundary condition. The paper establishes a concise version of a nor-
mal-modes determinant that characterizes the local-in-time linear and nonlinear
(in)stability of such patterns. Specific attention is given to the case where W has
two local minimizers U A,U B which can coexist via a static planar phase boundary.
Dynamic perturbations of such configurations being of particular interest, this paper
shows that the stability behaviour of corresponding almost-static phase boundaries
is uniformly controlled by an explicit expression that can be determined from deriv-
atives of W and g at U A and U B .

1. Introduction

In this paper we consider the equations

Ut − ∇x V = 0,

Vt − divx σ(U ) = 0,
(1)

with

curlx U = 0 (2)

of nonthermal elasticity, in which t ∈ R+, x ∈ R
d , U ∈ R

d×d+ , V ∈ R
d (d � 2),

denote time, space, local deformation gradient and local velocity, respectively. The
stress σ(U ) is supposed to derive as

σ(U ) = ∂W

∂U
,
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from a stored-energy density function W : R
d×d+ → R. For U ∈ R

d×d+ and ξ ∈ R
d ,

let κmin(ξ,U ) ∈ R be the smallest eigenvalue of the acoustic tensor

N (ξ,U ) = D2W (U )(ξ, ξ).

We study subsonic phase boundaries, that is weak solutions of (1) of form

(U, V )(x, t) =
{
(U−, V −), x · N < st,

(U+, V +), x · N > st
(3)

with N ∈ Sd−1, and

s2 < min{κmin(N ,U
−), κmin(N ,U

+)}. (4)

Besides the classical Rankine–Hugoniot type jump relations

−s[U ] − [V ] ⊗ N = 0,

−s[V ] − [σ(U )]N = 0
(5)

and the jump conditions

[U ] × N = 0 (6)

associated with (2), solutions (3) are required to satisfy an additional kinetic rule

g((U−, V −), (U+, V +), s, N ) = 0, (7)

where g is a real-valued function on� = (Rd×d+ ×R
d)×(Rd×d+ ×R

d)×R× Sd−1.
The purpose of this paper is to characterize stability properties of general subsoni-
cally moving phase boundaries (3). Particular attention is given to the case of small
dynamic perturbations of a static configuration

(U∗, V ∗)(x, t) =
{
(U A, 0), x · N∗ < 0,

(U B, 0), x · N∗ > 0.
(8)

For U ∈ R
d×d+ consider the hypotheses:

(H1) W is rank-one convex at U (local hyperbolicity).
(H2) For all Ũ near U and all directions of propagation ξ ∈ R

d , ξ �= 0, the eigen-
values of N (ξ, Ũ ) are all semi-simple and their multiplicity is independent
of Ũ and ξ (constant multiplicity).

For quadruples ((U−, V −), (U+, V +), s, N ) ∈ �, summarize (5) and (7) as

(H3) h((U−, V −), (U+, V +), s, N ) = 0,

and formulate

(H4) The (d2 + d + 1)× 2(d2 + d) matrix(
d(U+,V +)h , d(U−,V −)h

)∣∣
((U−,V −),(U+,V +),s,N )

has full rank.
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Finally consider the possible assumptions on an equilibrium configuration

(E1) There exist two states U A �= U B in R
d×d+ , local minima of W , and U A −U B

is rank one. W is rank-one convex both at U A and U B .
(E2) Hypothesis 2 is satisfied both with U = U A and U = U B . Hypotheses 3

and 4 hold with ((U−, V −), (U+, V +), s, N ) = ((U A, 0), (U B , 0), 0, N∗),
where N∗ ∈ Sd−1 such that with some υ ∈ R

d , U B − U A = υ ⊗ N∗.

The paper shows the following.

Theorem 1. For every U ∈ R
d×d+ satisfying (H1) and any (s, N ) ∈ R × Sd−1 with

s2 < κmin(N ,U ), there exist continuous mappings (analytic for Re λ > 0)

R̂s
s,N (U ) : �N → C

2d×d , R̂u
s,N (U ) : �N → C

2d×d ,

Ms,N (U ) : �N → C
2d×2d , Ks,N (U ) : �N → C

(d2+d)×2d

on �N := {(λ, ξ) ∈ C × R
d−1 : Re λ � 0, ξ · N = 0, |λ|2 + |ξ |2 = 1} with which

the following holds:
(i) For any subsonic phase boundary (3) satisfying (H3), (H4), and (H1), (H2)
for U = U− as well as for U = U+, the stability behaviour is controlled by the
Lopatinski function

	̂(U−,U+) = det

(
R̂s

s,N (U
−) Q̂(U−,U+) R̂u

s,N (U
+)

p̂−(U−,U+) q̂(U−,U+) p̂+(U−,U+)

)
: �N → C, (9)

in which

Q̂(U−,U+)(λ, ξ) :=
( [U ]N

−(λs[U ]N + i[σ(U )]ξ)
)
,

q̂(U−,U+)(λ, ξ) := −λ(ds g)+ i(ξ · dN )g,

p̂−(U−,U+)(λ, ξ) := −(d(U−,V −)g)Ks,N (U
−)R̂s

s,N (U
−),

p̂+(U−,U+)(λ, ξ) := (d(U+,V +)g)Ks,N (U
+)R̂u

s,N (U
+).

More precisely:

(i)i If 	̂(U−,U+) has no zero on �N , then (3) is nonlinearly stable.
(i)i i If 	̂(U−,U+) vanishes for some (λ, ξ) ∈ �N with Re λ> 0, then (3) is

strongly unstable.

(ii) M and K are given by simple explicit formulae in terms of first and second
derivatives of W . R̂s and R̂u represent the right stable and unstable spaces of M.
In their whole domain of definition, given by

−κmin(N ,U ) < s < κmin(N ,U ),

Ms,N (U ),Ks,N (U ), R̂s
s,N (U ), R̂u

s,N (U ), depend continuously on (U, s, N ).
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Corollary 1. If W satisfies hypotheses (E1) and (E2), then the dynamic stability of
the static phase boundary (3) is uniformly controlled by the static-case Lopatinski
function

	̂(U A,U B) : �N∗ → C,

in the sense that if 	̂(U A,U B) has no zero on �N∗ , then any phase boundary (3)
with (H3) and (U−,U+) sufficiently close to (U A,U B) is nonlinearly stable, while
if 	̂(U A,U B) vanishes for some (λ, ξ) ∈ �N∗ with Re λ > 0, then any such phase
boundary is strongly unstable.

Theorem 2. (i) Under the assumptions of Theorem 1, the left stable and the left
unstable spaces of Ms,N (U ) are represented by mappings

L̂s
s,N (U ) : �N → C

d×2d , L̂u
s,N (U ) : �N → C

d×2d ,

with the same regularity properties as the R̂s
s,N (U ), R̂u

s,N (U ).
(ii) The (d + 1)× (d + 1) determinants

	̂u(U−,U+) := det

(
L̂u

s,N (U
−)Q̂(U−,U+) L̂u

s,N (U
−)R̂u

s,N (U
+)

q̂u(U−,U+) p̂u(U−,U+)

)
, (10)

where

p̂u := ((d(U+,V +)g)Ks,N (U
+)+ (d(U−,V −)g)Ks,N (U

−))R̂u
s,N (U

+)
q̂u := q̂(U+,U−)+ (d(U−,V −)g)Ks,N (U

−)Q̂(U−,U+),

and

	̂s(U−,U+) = det

(
L̂s

s,N (U
+)R̂s

s,N (U
−) L̂s

s,N (U
+)Q̂(U−,U+)

p̂s(U−,U+) q̂s(U−,U+)

)
, (11)

where

p̂s := −((d(U+,V +)g)Ks,N (U
+)+ (d(U−,V −)g)Ks,N (U

−))R̂s
s,N (U

−),
q̂s := q̂(U+,U−)− (d(U+,V +)g)Ks,N (U

+)Q̂(U−,U+)

are equivalent to 	̂(U−,U+),

	̂(U−,U+) ∼ 	̂u(U−,U+) ∼ 	̂s(U−,U+),

in the sense that the three differ from each other only by nonvanishing factors.

Remark 1. Hypothesis 1 is both the Legendre–Hadamard ellipticity condition for
the static problem and the natural well-posedness criterion for the dynamic prob-
lem (see [7, 9]), at some constant state U . Hypothesis 2 means that the system
is symmetrizable hyperbolic with constant multiplicity (see notably [23]). (H3)
just summarizes the Rankine–Hugoniot relations and the kinetic rule, and (H4)
constitutes a nondegeneracy condition, the need for which, in general contexts,
was pointed out in [8]. The reference configuration described by condition (E1) is
standard in steady-state two-phase elasticity (see [25]).
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Remark 2. An interesting alternative for characterizing stability properties of mov-
ing phase boundaries (3) is [14] via the second-order system

Xtt − divxσ(∇x X) = 0 (12)

and Sakamoto’s theory [26, 27]. In contrast to the situation for (12), the static case
s = 0 is characteristic for (1), which may make it seem difficult at first sight; in
fact, however, the constraint (2) prevents the 0-speed mode from being active, so
that s = 0 poses no problem. One (certainly temporary) advantage of the first-order
framework consists in the fact that the theory for nonlinear nonconstant-coefficients
settings is readily available for it in the literature [8, 21, 22].

Remark 3. The literature offers significant approaches towards the issues of
(i) whether simple kinetic rules like (7) are at all capable to capture at least some of
the complexities of phase-boundary dynamics in real solid materials, and (ii) how
such rules may be derived from considerations, of deterministic or stochastic na-
ture, at microscopic and mesoscopic levels; see [2, 10, 32]. We indeed view our
results as a critical contribution to this modelling problem. In a negative sense, a
kinetic rule that passes not even the test of a multidimensional stability analysis can
hardly be accepted for a mathematically satisfactory description of stably moving
phase boundaries.

Plan of the paper

In Section 2 we gather basic facts about moving interfaces in conservative
systems and show how to reduce the order of Lopatinski determinants for gen-
eral undercompressive or Lax shock fronts. Section 3 describes the objects of our
study, namely subsonic phase boundaries for hyperelastic materials. We justify the
assumptions of (H1)–(H4) and (E1), (E2) by discussing the model and explaining
its principal features. The central Section 4 contains a careful investigation into the
peculiarities of the normal-mode analysis in the specific situation of this model.
Section 5 combines the previous findings into proofs of Theorems 1 and 2.

2. Lopatinski determinants and undercompressive shock waves

2.1. Conservation laws and shock fronts

Consider a system of n conservation laws in d spatial variables of form

ut +
d∑

j=1

f j (u)x j = 0, (13)

where u ∈ U ⊂ R
n , U open and convex, f j ∈ C∞(U; R

n), j = 1, . . . , d. We
assume that system (13) is hyperbolic, that is, for any u ∈ U and all ξ ∈ R

d , the
matrix

A(ξ, u) :=
d∑

j=1

ξ j A j (u), A j (u) := D f j (u),
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is diagonalizable over R with C∞ real eigenvalues a1(u; ξ) � · · · � an(u; ξ)
(called characteristic speeds) of fixed algebraic multiplicities α1, . . . , αn . System
(13) supports planar discontinuity fronts

u(x, t) =
{

u+, if x · N > st,

u−, if x · N < st,
(14)

where u± are constant states in U , u+ �= u−, N ∈ Sd−1 is the direction of propa-
gation and s ∈ R is the speed of the discontinuity. The classical Rankine–Hugoniot
type jump relations

−s[u] + [ f (u)]N = 0, (15)

where f := ( f1, . . . , fd) ∈ R
n×d , are necessary for (14) being a weak solution

to (13). We assume that the discontinuity is noncharacteristic, that is, there exist
integers o−, o+ ∈ {1, . . . , n} (the “numbers of outgoing modes”) such that

a j (N , u−) < s < ak(N , u−) for all j ≤ o−, k > o−, (16)

a j (N , u+) < s < ak(N , u+) for all j � n − o+, k > n − o+, (17)

and define a “degree of undercompressivity” as

l = o− + o+ + 1 − n.

Obviously, l counts the amount by which the total number o = o−+o+ of outgoing
modes exceeds n −1. The case l = 0 corresponds to the classical “Lax type” shock
wave [20], while discontinuity waves with l > 0 are often called undercompressive
shock waves. For undercompressive shock waves one augments (15) to

0 = h(u+, u−, s, N ) :=
(−s[u] + [ f (u)]N

g(u+, u−, s, N )

)
, (18)

with the last l kinetic conditions given by a “kinetic function” [1, 12, 13, 29–31,
34]

g : U × U × R × Sd−1 → R
l .

2.2. Lopatinski determinants

Due to the fundamental work of Majda and Métivier [11, 21, 22], the non-
linear stability behaviour of shock fronts is known to be controlled by so called
Lopatinski conditions, as they were introduced for hyperbolic problems by Kreiss
[19] and Sakamoto [26, 27]. The Majda–Métivier theory has been extended to
general undercompressive shocks [4, 8, 13].

The starting point of these analyses is a Fourier decomposition of the constant
coefficients linearized problem associated with (13) and (18) at (14). Introducing a
level set function (φ = x · N − st at the reference configuration), we write (18) as

h(u−, u+,−φt ,∇xφ) = 0.
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The linearized problem reads

w±
t +

d∑
j=1

A j (u±)w±
x j

= 0, for x · N − st ≷ 0,

(du+h)w+ + (du−h)w− − (dsh)ψt + (dN h) · ∇ψ = 0, for x · N − st = 0.

Considering a single Fourier mode

w±(x, t) = ŵ±(x · N − st)eiξ ·x+λt , x · N − st ≷ 0,

ψ(x, t) = ψ̂eiξ ·x+λt ,

with λ ∈ C, ξ · N = 0, we obtain

λŵ± + (A±
N − s I )(ŵ±)′ + i A±

ξ ŵ
± = 0,

(du+h)ŵ+(0)+ (du−h)ŵ−(0)− ψ̂(λ(dsh)+ i(ξ · dN )h) = 0,
(19)

where A±
ν is a short cut for A(ν, u±), for every ν ∈ R

d . The bounded solutions
ŵ+ : [0,+∞) → C

n , ŵ− : (−∞, 0] → C
n correspond to initial values

ŵ+ = ŵ(0) ∈ span R̃u+, ŵ− = ŵ−(0) ∈ span R̃s−,

with matrices R̃s+, R̃u− whose columns span the stable and unstable spaces of

(A±
N − s I )−1(λI + i A±

ξ )

respectively. The basic stability requirement of Lopatinski, Kreiss, Majda and suc-
cessors is that for Re λ � 0, no pair (ŵ−, ŵ+) ∈ R̃s− × R̃u+ allow a solution ψ̂ of
(19). This yields the uniform Lopatinski condition that

	(λ, ξ) = det
(
(du−h)R̃s−(λ, ξ), −λ(dsh)+ i(dN h)ξ, (du+h)R̃u+(λ, ξ)

)
have no zero on

�N := {(λ, ξ) ∈ C × R
d : Re λ � 0, ξ · N = 0, |λ|2 + |ξ |2 = 1}.

In the Lax case (l = 0), this Lopatinski determinant reads

	 = det
(
Rs− Q Ru+

)
,

with

Rs,u
± (λ, ξ) spanning the stable/unstable space of (λI + i A±

ξ )(A
±
N − s I )−1 (20)

and

Q = Q(λ, ξ) = λ[u] + i[ f (u)]ξ. (21)

For undercompressive shocks, one obtains

	 = det

(
Rs− Q Ru+

−(du− g)(A−
N − s I )−1 Rs− q (du+ g)(A+

N − s I )−1 Ru+

)
(22)

with (20), (21), and

q = q(λ, ξ) = −λ(ds g)+ i(dN g)ξ.
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2.3. A reduction

In this subsection we indicate a systematic way of decreasing the order of
Lopatinski determinants. The Lopatinski determinant (22) of an undercompres-
sive or Lax shock can be reduced as follows. First, if l > 0, multiplying the upper
n × (n + l) block of the matrix on the right-hand side of (22) from the left by
(du− g)(A−

N − s I )−1 and subtracting the result from the lower l × (n + l) block, we
get a matrix of the form (

Rs− Q Ru+
0 qu pu

)
.

We let Lu−(λ, ξ) denote an (n − o−) × n matrix whose rows represent the left
unstable space of (λI + i A±

ξ )(A
±
N − s I )−1. Necessarily, Lu− Rs− = 0. We multiply⎛

⎝(Rs−)t 0
Lu− 0
0 I

⎞
⎠ (

Rs− Q Ru+
0 qu pu

)
=

⎛
⎝(Rs−)t Rs− ∗ ∗

0 Lu−Q Lu− Ru+
0 qu pu

⎞
⎠ . (23)

The matrix on the far left of (23) and the matrix (Rs−)t Rs− are not singular. Thus, the
Lopatinski determinant reduces, up to a nonvanishing factor, to the (o++l)×(o++l)
determinant

	u := det

(
Lu−Q Lu− Ru+

qu pu

)
, (24)

where

pu :=
(
(du+ g)(A+

N − s I )−1 + (du− g)(A−
N − s I )−1

)
Ru+,

qu := q + du− g (A−
N − s I )−1 Q.

Obviously, the reduction can be performed equally well on the right column. Mul-
tiplying the upper block by (du+ g)(A+

N − s I )−1, subtracting the result from the
lower block, and multiplying by a suitable nonsingular matrix on the left, we obtain

	s = det

(
Ls+ Rs− Ls+Q

ps qs

)
, (25)

where

ps := −
(
(du− g)(A−

N − s I )−1+(du+ g)(A+
N − s I )−1

)
Rs−,

qs := q − (du+ g)(A+
N − s I )−1 Q.

Equation (25) is an (o− + l)× (o− + l) determinant.

Lemma 1 (Reduced Lopatinski determinant). Suppose (14) is a Lax or undercom-
pressive planar shock front of degree l � 0, satisfying Rankine–Hugoniot jump
conditions plus l transition conditions of form g = 0. Then the associated Lopatin-
ski determinant and the reduced versions (24), (25) are equivalent to each other,

	 ∼ 	u ∼ 	s,

in the sense that they differ only by a nonvanishing factor.
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Remark 4. For extreme Lax k-shocks, k = n (o+ = 0) or k = 1 (o− = 0), the
reduced Lopatinski determinants are just products of a left Lopatinski vector with
the jump vector,

	u = lu−Q if k = n, and 	s = ls+Q if k = 1;
these expressions are familiar from [16, 28]. The general expressions

	u = det
(
Lu−Q Lu− Ru+

)
	s = det

(
Ls+ Rs− Ls+Q

)
may be useful for investigations on nonextreme Lax shocks.

3. Elastodynamics and moving phase boundaries

3.1. Modelling

We consider an elastic body identified at rest by a reference configuration, which
is an open set � ⊂ R

d , d � 2, and describe its motion by mapping (x, t) �→ X ,
� × [ 0,+∞) → R

d , where X is the position at instant t of the particle that was
situated in x ∈ � at rest. We assume that, (i) no thermal effects play a role, (ii)
the forces in the medium derive from a stored-energy function W (∇x X), and (iii)
there are no external forces. Then basic principles of continuum mechanics show
that X (t, x) satisfies the second-order PDE system [7]

Xtt − divx (DW (∇x X)) = 0. (26)

We define the velocity V : �× [ 0,+∞) → R
d and the deformation gradient

U : �× [ 0,+∞) → R
d×d by

V := Xt , U := ∇x X

or, component-wise, by Vj = ∂X j/∂t , Ui j = ∂Xi/∂x j , i, j = 1, . . . , d. Equa-
tions (26) and various equalities of mixed partial derivatives yield the d2 + d
first-order equations of motion

∂tUi j − ∂ j Vi = 0, i, j = 1, . . . , d,

∂t Vi −
d∑

j=1

∂ j

(
∂W (U )

∂Ui j

)
= 0, i = 1, . . . , d,

and the constraints

∂kUi j = ∂ jUik, i, j, k = 1, . . . , d.

The equations of motion account for conservation of mass, momentum, and more
[9]. The stored-energy density W is defined (at most) for U ∈ R

d×d+ , the set of
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d × d-matrices with positive determinant (the material does not change orienta-
tion), and is fundamentally nonlinear. A basic restriction on W is the principle of
frame indifference,

W (U ) = W (OU ) for all O ∈ SOd(R),

where SOd(R) denotes the set of d ×d proper orthogonal real matrices (rotations).
This restriction has important consequences [7] for the possible shapes of W ; we
do not enter any details since they do not matter for the considerations in this paper.

From now on we assume that � = R
d ; due to finite speed of propagation and

the fact that we are interested in the local-in-time, local-in-space evolution near the
phase boundary means no loss of generality.

Notation

In the sequel, we shall adopt the following notation. We write the stress tensor
as

σ(U ) := ∂W

∂U

and denote U j and σ j as the j-th columns of U and σ , respectively; those are,

U j =
⎛
⎜⎝

U1 j
...

Ud j

⎞
⎟⎠ , and σ(U ) j = WU j =

⎛
⎜⎝

WU1 j
...

WUd j

⎞
⎟⎠ .

Without confusion we occasionally write Vj as the j-th scalar component of the
velocity. To express the second derivatives of W , we define for each pair 1 � i, j �
d, the d × d matrices

B j
i (U ) := ∂σ j

∂Ui
=

⎛
⎜⎝

WU1 j U1i · · · WU1 j Udi
...

...

WUd j U1i · · · WUd j Udi

⎞
⎟⎠ ∈ R

d×d .

Clearly, each Bi
i is symmetric, and (Bi

j )
t = B j

i .

3.2. Rank-one convexity and hyperbolicity

Equations (27) constitute a system of conservation laws of form (13), where
u := (U t

1, . . . ,U
t
d , V t ) ∈ R

n , n = d2 + d. We write u = (U, V )t for short. The
fluxes in (13) are given by

f j (U, V ) := −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

V
...

0
σ(U ) j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
d2+d , j = 1, . . . , d, (27)
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where the vector V appears in the j-th position. In our notation, the Jacobians are,
correspondingly,

A j (U ) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

I
...

0
B j

1 (U ) · · · B j
d (U ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(d2+d)×(d2+d), (28)

where the 0 matrix in the upper left is the d2 × d2 null matrix, and the matrix I on
the last column appears in the j-th d × d block from top to bottom. Notice that A j

is a matrix-valued function of the deformation gradient alone.

Definition 1 [9]. We define the d × d acoustic tensor N (ξ,U ) as

N (ξ,U ) :=
d∑

i, j=1

ξiξ j B j
i (U ) (29)

for U ∈ R
d×d+ and for all ξ ∈ R

d .

Definition 2 [7, 9]. We say the energy density function W is rank-one convex at U
if it satisfies the Legendre–Hadamard condition,

νtN (ξ,U )ν > 0, for all ν and ξ in R
d , (30)

that is, if W is convex along any direction ξ ⊗ ν with rank one (or equivalently, if
the acoustic tensor is positive definite for any ξ ∈ R

d ).

Lemma 2. At any state U, if W is rank-one convex, then system (27) is hyperbolic.

Proof. From the expression of the Jacobians we note that a = 0 is an eigenvalue
with algebraic multiplicity bigger than or equal to d2. For a �= 0, the eigenvalue
problem

A(ξ,U )(Ũ , Ṽ )t = a(Ũ , Ṽ )t

with A j (ξ,U ) := ∑
j ξ j A j (U ) can be written as

ξi Ṽ + aŨi = 0, i = 1, . . . , d,∑
i, j

ξ j B j
i (U )Ũi + aṼ = 0.

Upon substitution,

a2Ṽ =
∑
i, j

ξ jξi B j
i (U )Ṽ = N (ξ,U )Ṽ .

Since the Legendre–Hadamard condition (30) holds, then a2 ∈ R
+ for ξ �= 0, and

the eigenvalues a of A(ξ,U ) are all real for every ξ ∈ R
d . �
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Note that the characteristic speeds of A(ξ,U ), ξ �= 0, are the 2d square roots
of the d positive eigenvalues of the acoustic tensor, with the same multiplicity, and
a = 0 with algebraic multiplicity d2 −d. More precisely, since by the assumptions
of Hypotheses 1 and 2 and by continuity, the eigenvalues of N (ξ,U ), ξ �= 0 are all
semi-simple and positive with multiplicity depending neither on ξ nor on U near
U A or U B , we obtain

Corollary 2. Under the assumptions of Hypotheses 1 and 2, for any ξ ∈ R
d \ {0},

the characteristic speeds of A(ξ,U ) are (with numbering slightly different from
Section 2.1):

i. a0(ξ,U ) = 0 with constant algebraic multiplicity α0 = d2 − d, and

ii. a±
j (ξ,U ) = ±√

κ j (ξ,U ), j = 1, . . . ,m, where κ j are the m distinct semi-
simple eigenvalues of N , m � d, with constant multiplicities α j , and with∑
α j = d.

3.3. Static rank-one connections and spinodality

Two constant-state phases coexist in a static configuration when there is a piece-
wise linear deformation X (x) with

∇x X =
{

U A, if x · N∗ < 0,

U B, if x · N∗ > 0

for some unit vector N∗ ∈ R
d . Continuity of the tangential derivatives of X across

the boundary—formally a consequence of (2)—implies

U B = U A + υ ⊗ N∗ for some υ ∈ R
d; (31)

we say that U A and U B are rank-one connected [3, 25]. By virtue of the second
one of the Rankine–Hugoniot relations (5), the function ψ(ρ) := W (U (ρ)) with

U (ρ) = U A + ρ υ ⊗ N∗ = U B − (1 − ρ) υ ⊗ N∗

satisfies ψ ′(0) = ψ ′(1) = 0. Therefore if the Legendre–Hadamard condition (30)
is satisfied at any U (ρ) with ρ ∈ [0, 1], for example at U A and U B , then also

0 > ψ ′′(ρ̃) =
∑ ∂2W

∂Ui j∂Uhk
(U (ρ̃))υiυh N∗

j N∗
k

for an open set of ρ̃ ∈ (0, 1), that is the Legendre–Hadamard condition is vio-
lated along the way. This region where hyperbolicity is lost is sometimes called the
spinodal region [33].
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3.4. Subsonicity

Definition 3. (i) A speed s ∈ R is called subsonic with respect to a direction
N ∈ Sd−1 and a state U ∈ R

d×d+ N ∈ Sd−1 if

s2 < min{κ j (N ,U ) : j = 1, . . . ,m}.
(ii) A phase boundary (3) is called subsonic if its speed s is subsonic with respect
to both (N ,U−) and (N ,U+).

Lemma 3. With o−, o+, l denoting the number of outgoing characteristics on the
left, the number of outgoing characteristics on the right, and the degree of under-
compressivity, respectively, (see Section 2), a subsonic phase boundary of speed
s > 0 [s < 0] has

o− = d, o+ = d2, l = 1 [o− = d2, o+ = d, l = 1].
Proof. This is a direct consequence of Corollary 2. �

3.5. Choice of the kinetic rule

The fact that l = 1 is the reason why one takes the function g in the kinetic
rule (7) with values in R

1 (as opposed to R
l with some other l). Clearly, the exis-

tence and the stability behaviour of a phase boundary solution (3) depend crucially
on the actual shape of g. Material-sciences literature provides significant propos-
als regarding this choice; see for example [2, 10, 32]. The present paper does not
explore this question at all. For the application of its results to a well-motivated
general class of kinetic rules, the reader is referred to [14].

4. Normal-modes analysis

We study modes of the matrix field

A(U, s, λ, ξ̃ ) = C(s)−1

⎛
⎝λI + i

∑
j �=1

ξ j A j (U )

⎞
⎠ (

A1(U )− s I
)−1

C(s) (32)

with

C(s) :=
⎛
⎝Id 0 0

0 s Id2−d 0
0 0 Id .

⎞
⎠ , (33)

assuming that U satisfies Hypothesis 1 of local hyperbolicity and s is subsonic
with respect to ((1, 0, . . . , 0),U ). The spatio-temporal frequency vector (λ, ξ̃ ) =
(λ, ξ2, . . . , ξd) ranges in

� = {(λ, ξ̃ ) ∈ C × R
d−1 : Re λ � 0, |λ|2 + |ξ̃ |2 = 1}



14 Heinrich Freistühler & Ramón G. Plaza

For convenience we extend the definition of the acoustic tensor to allow com-
plex directions. Let (ω, ω̃) ∈ C × C

d−1, ω1 = ω, ω̃ = (ω2, . . . , ωd) and define

Ñ (ω, ω̃,U ) :=
d∑

i, j=1

ωiω j B j
i (U )

= ω2 B1
1 (U )+ ω

∑
j �=1

ω j (B
1
j (U )+ B j

1 (U ))+
∑

i, j �=1

ωiω j B j
i (U ).

We use the short cut Ñ (ω, ω̃) = Ñ (ω, ω̃,U ).

Lemma 4. For every (λ, ξ̃ ) ∈ �, the 2d-dimensional linear space

G(λ, ξ̃ ) := {(λY, iξ2Y, . . . , iξdY, Z)� : Y, Z ∈ C
d} ⊆ C

d2+d , (34)

is invariant for A(U, s, λ, ξ̃ ). The matrix M : C
2d → C

2d that expresses the action

A(U, s, λ, ξ̃ )(λY, iξ2Y, . . . , iξdY, Z)� = (λỸ , iξ2Ỹ , . . . , iξd Ỹ , Z̃)�

of A on G as

M(U, s, λ, ξ̃ )

(
Y
Z

)
:=

(
M1

1 M2
1

M1
2 M2

2

) (
Y
Z

)
=

(
Ỹ
Z̃

)
, (35)

has the d × d-block components

M1
1 := −B̂

⎛
⎝λs I + i

∑
j �=1

ξ j B1
j

⎞
⎠ , (36)

M2
1 := B̂, (37)

M1
2 :=

⎛
⎝λs I+i

∑
j �=1

ξ j B j
1

⎞
⎠ B̂

⎛
⎝λs I+i

∑
j �=1

ξ j B1
j

⎞
⎠ − λ2 I −

∑
i, j �=1

ξiξ j Bi
j , (38)

M2
2 := −

⎛
⎝λs I + i

∑
j �=1

ξ j B j
1

⎞
⎠ B̂, (39)

where

B̂(s) := (s2 − B1
1 )

−1 (40)

and is well defined for all subsonic s including 0.

Remark 5. (i) This shows that, while A is defined only for s �= 0, its restriction

A(U, s)|G : G → G

has a unique continuous/analytic extension to all values (U, s) such that s is sub-
sonic with respect to U , including s = 0. (ii) Regarding (40), note that the invertibity
of s2 − B1

1 follows from subsonicity.

For the proof and later we will use
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Lemma 5.

C(s)−1(A1 − s I ) =

⎛
⎜⎜⎜⎜⎜⎝

−s I 0 · · · 0 −I
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
−B1

1 −B1
2 · · · −B1

d −s I

⎞
⎟⎟⎟⎟⎟⎠ (41)

and

(A1 − s I )−1C(s) =

⎛
⎜⎜⎜⎜⎜⎝

−s B̂ −B̂ B1
2 · · · −B̂ B1

d B̂
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
B̂ B1

1 s B̂ B1
2 · · · s B̂ B1

d −s B̂

⎞
⎟⎟⎟⎟⎟⎠ , (42)

are continuous/analytic functions including s = 0.

Proof. By direct block-by-block computation. �
Proof of Lemma 4. Let r = (λY, iξ2Y, . . . , iξdY, Z)� ∈ G, for some Y, Z ∈ C

d .
With the aid of (42) one can compute

(A1 − s I )−1C(s)r =

⎛
⎜⎜⎜⎜⎜⎜⎝

B̂(Z − (λs I + i
∑

j �=1 ξ j B1
j )Y )

−iξ2Y
...

−iξdY
B̂((λB1

1 + is
∑

j �=1 ξ j B1
j )Y − s Z)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where B̂ is defined by (40). Multiplying on the left by C(s)−1(λI + i
∑

j �=1 ξ j A j )

we obtain

A(λ, ξ̃ , s)r =

⎛
⎜⎜⎜⎜⎜⎝

λỸ
iξ2Ỹ
...

iξd Ỹ
Z̃

⎞
⎟⎟⎟⎟⎟⎠ ,

with

Ỹ = B̂

⎛
⎝Z −

⎛
⎝λs I + i

∑
j �=1

ξ j B1
j

⎞
⎠ Y

⎞
⎠ (43)

and

Z̃ =
⎛
⎝λs I + i

∑
j �=1

ξ j B j
1

⎞
⎠ B̂

⎛
⎝

⎛
⎝λs I + i

∑
j �=1

ξ j B1
j

⎞
⎠ Y − Z

⎞
⎠ − λ2Y −

∑
i, j �=1

ξi ξ j Bi
j Y,

(44)
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showing A G ⊆ G, as claimed. Clearly, dim G = 2d. Let us take a look at the map-
ping (Y, Z) �→ (Ỹ , Z̃) defined by (43), (44), which can be written in matrix form
as (35)–(39). We are interested in the eigenvalues β = −iµ ∈ C of M. Assuming
(Y, Z)� ∈ C

2d is an eigenvector, then

M1
1 Y + M2

1 Z = −iµY,

M1
2 Y + M2

2 Z = −iµZ .

Hence, Z = −(M2
1 )

−1(iµI + M1
1 )Y and Y �= 0. Upon substitution,

(M1
2 − M2

2 (M
2
1 )

−1 M1
1 − iµ(M2

2 (M
2
1 )

−1 + (M2
1 )

−1 M1
1 )+ µ2(M2

1 )
−1)Y = 0.

Plugging the expressions for Mi
j into the matrix acting on Y in the last equation

and simplifying we obtain⎛
⎝λs I + i

∑
j �=1

ξ j B j
1

⎞
⎠ B̂

⎛
⎝λs I + i

∑
j �=1

ξ j B1
j

⎞
⎠ − λ2 I −

∑
i, j �=1

ξiξ j Bi
j

−
⎛
⎝λs I + i

∑
j �=1

ξ j B j
1

⎞
⎠ B̂

⎛
⎝λs I + i

∑
j �=1

ξ j B1
j

⎞
⎠

+iµ

⎛
⎝λs + i

∑
j �=1

ξ j B1
j

⎞
⎠ + iµ

⎛
⎝λs + i

∑
j �=1

ξ j B j
1

⎞
⎠ + µ2(s2 − B1

1 )

= −
⎛
⎝µ2 B1

1 + µ
∑
j �=1

ξ j (B
1
j + B j

1 )+
∑

i, j �=1

ξ jξi Bi
j

⎞
⎠ − (iµs − λ)2 I

= −(Ñ (µ, ξ̃ )+ (iµs − λ)2 I ),

yielding

(Ñ (µ, ξ̃ )+ (iµs − λ)2 I )Y = 0.

�
We will investigate only those modes of A(U, s, ·, ·) the amplitudes of which

lie in G.

Lemma 6. For (λ, ξ̃ ) ∈ � and s subsonic, the eigenvalues −iµ of M(U, s, λ, ξ̃ )
satisfy

det(Ñ (µ, ξ̃ ,U )+ (iµs − λ)2 I ) = 0 (45)

and (Y, Z)� ∈ C
2d is an eigenvector of M if and only if

Y ∈ ker(Ñ (µ, ξ̃ )+ (iµs − λ)2 I ), Y �= 0, and

Z =
(

s(λ− iµs)I + iµB1
1 + i

∑
j �=1

ξ j B1
j

)
Y. (46)

Moreover, for Re λ> 0, d of these eigenvalues (counting multiplicities) have
Imµ> 0, while the remaining d of them have Imµ < 0.
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Proof. Clearly, (45) and (46) follow from the proof of Lemma 4. The last as-
sertion comes essentially from Hersh’s lemma [15]. For completeness, we re-
call the original argument of Hersh. Suppose µ ∈ R is a solution to (45). Since
Ñ (µ, ξ̃ ) = N (µ, ξ̃ ) is the real acoustic tensor, by hyperbolicity Hypothesis 1,
−(iµs − λ)2 must be real and positive, implying Re λ = 0. Therefore, the roots
of (45) in Re λ > 0 must all have Imµ �= 0. By continuity of the roots and con-
nectedness of �, it suffices to count them for λ = η ∈ R

+, ξ̃ = 0. This yields
Ñ (µ, 0) = µ2 B1

1 , and consequently µ = iη/(±√
κ − s), where κ > 0 is an

eigenvalue of B1
1 . By hypothesis, s is subsonic, thus

Imµ = η

+√
κ − s

> 0, and Imµ = η

−√
κ − s

< 0,

lead us to count d unstable and d stable frequencies. �
Lemma 7. There exist continuous mappings (analytic for Re λ > 0)

R̂u
s (U ) : � → C

2d×d , L̂u
s (U ) : � → C

d×2d ,

R̂s
s (U ) : � → C

2d×d , L̂s
s(U ) : � → C

d×2d ,
(47)

with L̂u
s (U )R̂

u
s (U ) = Id , L̂s

s(U )R̂
s
s (U ) = Id , spanning right and left invariant

spaces of M(U, s, λ, ξ̃ ), spaces that are unstable, respectively stable (at least) for
Re λ > 0. The matrix fields

R̂u
s (U ), L̂u

s (U ), R̂s
s (U ), L̂s

s(U )

depend continuously on U and s ∈ (−√
κmin(e1,U ),

√
κmin(e1,U )).

Proof. By Lemma 6, it is clear that for Re λ > 0 and subsonic s (including s = 0)
the matrix M is hyperbolic in the sense that its eigenvalues −iµ have nonzero
real parts and in addition, they split into d stable (with Imµ < 0), and d unstable
(with Imµ > 0) ones. By standard matrix perturbation theory [17], the stable and
unstable spaces are analytic in (λ, ξ̃ ) and we can choose bases arranged in analytic
matrix fields (47), for Re λ > 0. The next lemma will show that M satisfies Majda’s
block structure assumption. This allows us to extend the matrix fields continuously
to the imaginary axis Re λ = 0, as claimed. �

For a precise statement of the block structure condition see [21, 23] and the
references therein.

Lemma 8. The matrix M defined in (35) satisfies the block structure condition of
Majda on a neighbourhood of any point (λ, ξ̃ ,U , s) ∈ C×R

d−1 ×R
d×d+ ×R, with

U near U A or U B, −√
κmin(e1,U ) < s <

√
κmin(e1,U ), and λ = iτ , τ ∈ R,

|τ |2 + |ξ̃ |2 = 1.

Proof. We follow Métivier’s arguments in [23] closely. Let us denote λ = η+ iτ ,
with η, τ ∈ R and by z = (U, s, η, τ, ξ̃ ) the parameters in R

d×d+ × R
d+2. Define

the sets

� := {(η, τ, ξ̃ ) : η2 + τ 2 + |ξ̃ |2 = 1, η � 0},
�0 := � ∩ {η = 0}, (imaginary axis).
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M(z) is a 2d × 2d matrix, defined on a neighbourhood O of z ∈ R
d×d+ ×R×�,

and C∞ in z, where U is near U A or U B . It suffices to show that M satisfies the
following conditions:

(i) When η > 0, then det(iµI + M(z)) �= 0, for all µ ∈ R.

(ii) When z ∈ R
d×d+ ×R×�0, then for all µ ∈ R such that det(iµI +M(z)) = 0,

there is a positive integer α ∈ Z
+ and C∞ functions ν(µ, ξ̃ ,U, s) and θ(z, µ)

defined on neighbourhoods of (µ, ξ̃ ,U , s) in C × R
d−1 × R

d×d+ × R, and
(z, µ) ∈ O × C, respectively, holomorphic in µ and such that

det(iµI + M(z)) = θ(z, µ)(η + iτ + iν(µ, ξ̃ ,U, s))α. (48)

Moreover, ν is real when µ is real, and θ(z, µ) �= 0. In addition, there is a

C∞ matrix-valued function P(µ, ξ̃ ,U, s) on a neighbourhood of (µ, ξ̃ ,U , s),
holomorphic in µ, such that P is a projection of rank α and

ker(iµI + M̄(z)) = P(µ, ξ̃ ,U, s)C2d , (49)

when η + iτ + iν(µ, ξ̃ ,U, s) = 0.

By hyperbolicity, (i) holds. Indeed, suppose η > 0. If −iµ is an eigenvalue of
M(z) with µ ∈ R, then by Lemma 6,

det(N (µ, ξ̃ ,U )+ (η + iτ − iµs)2 I ) = 0,

where N is the real acoustic tensor. By assumption (H1), (η+ iτ − iµs)2 must be
real and negative, yielding a contradiction with η > 0.

To verify (ii), suppose η = 0. If µ ∈ R is such that det(iµI + M(z)) = 0, then
by Lemma 6,

det(N (µ, ξ̃ ,U )− (τ − µs)2 I ) = 0.

Since (τ , ξ̃ ) �= (0, 0), then (µ, ξ̃ ) �= (0, 0). Indeed, if ξ̃ = 0 then N (µ, 0) =
µ2 B1

1 and det(µB1
1 − (τ − µs)2 I ) = 0 implies µ �= 0. (In particular, τ − µs �= 0

holds.) Therefore, by (H1) and (H2), there exists a unique κ j (µ, ξ̃ ,U )> 0 such that

(τ −µs)2 = κ j (µ, ξ̃ ,U ), or equivalently, there exists a unique root (depending on
the sign of τ − µs), a j = µs + √

κ j or a j = µs − √
κ j , such that

τ + a j (µ, ξ̃ ,U , s) = 0.

The characteristic speeds a j are real analytic functions of µ, which can be
extended to the complex domain. In addition, the factorization

det(iµI + M(z)) = θ(z, µ)
m∏

l=1

(τ − µs + √
κl)

αl (τ − µs − √
κl)

αl

= θ̃ (z, µ)(τ + a j (µ, ξ̃ ,U , s))α j ,
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with θ(z, µ) �= 0, also extending to a complex neighbourhood of µ and to λ =
iτ+η ∈ C (see [18]). Indeed, there exists δ > 0 such that a j are extended to analytic
functions ν j (µ, ξ̃ ,U, s) defined for complex µ such that |Imµ| � δ(|Reµ| +
|ξ̃ |), with ν j = a j whenever µ is real (see [24].) The factorization can also be
complexified in a possibly smaller neighbourhood of µ and to λ = iτ + η, where

det(iµI + M(z)) = θ̃ (z, µ)(η + iτ + iν j (µ, ξ̃ ,U, s))α j ,

when η + iτ + iν j = 0, that is where (48) holds.
Since for each (µ, ξ̃ ) �= (0, 0), µ ∈ R, κ j is a real, positive and semi-simple

eigenvalue of N (µ, ξ̃ ,U ) with local constant multiplicity α j , then the matrix� j :
C

d → C
d , defined as

� j (µ, ξ̃ ,U ) := − 1

2π i

∫
|ζ−κ j (µ,ξ̃ ,U )|�ε

(N (µ, ξ̃ ,U )− ζ )−1 dζ,

with ε > 0 sufficiently small, is a projector of constant rank α j , C∞ function of
(µ, ξ̃ ,U ), for (µ, ξ̃ ) �= (0, 0). Thus

ker(N (µ, ξ̃ ,U )− (τ − µs)2 I ) = � j (µ, ξ̃ ,U )C
d .

By analytic continuation, the projectors � j extend analytically to µ in a small
neighbourhood of µ. Thus, if we define P j (µ, ξ̃ ,U , s) : C

2d → C
2d as

P j (µ, ξ̃ ,U , s) :=
(

� j (µ, ξ̃ ,U ) 0
i(s(τ − µs)I + µB1

1 + ∑
k �=1 ξ k

B1
k )� j (µ, ξ̃ ,U ) 0

)
,

then it is clearly a projector of constant rank α j , which can be extended analytically
to some small complex neighbourhood of µ as well. By Lemma 6, M has an
eigenvector (Y, Z)� ∈ C

2d with eigenvalue −iµ if and only if

Z = (s(τ − µs)I + iµB1
1 +

∑
k �=1

ξ
k

B1
k )Y, and

(N (µ, ξ̃ ,U )− (τ − µs)2 I )Y = 0.

Hence Y ∈ � j (µ, ξ̃ ,U )Cd , and by construction, it is then clear that

ker(iµI + M(z)) = P j (µ, ξ̃ ,U , s)C2d .

Analogously, this relation and the projector P j extend to a small complex neigh-
bourhood of µ such that (49) holds.

In this fashion, we have shown that M satisfies the generic Assumption 1.4 in
[23]. By Theorem 1.5 in the same reference, and taking the parameter a in [23] as
a := (U, s), we can conclude that M satisfies the block structure condition on a
neighbourhood of z, as claimed. �
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Remark 6. Continued inspection shows that the characteristic polynomial of A is

π(µ) = (iµs − λ)d
2−d det(Ñ (µ, ξ̃ )+ (iµs − λ)2 I ).

Equations (1) thus possess a Lopatinski frequency

β∗ = −iµ∗ = − λ

s
.

This frequency creates a bad singularity around s = 0.

5. Proofs of Theorems 1 and 2

In principle, we could compose the original (d2 + d + 1)× (d2 + d + 1) Lop-
atinski determinant as in (22). However, Theorems 1 and 2 establish determinants
of distinctly smaller orders and, more importantly, in them (i) the singular mode
mentioned at the end of Section 4 does not appear, while (ii) the characteristic case
s = 0 is not singular.

The key point for proving Theorems 1 and 2 is the observation that due to the
constraints of (2), the whole Fourier analysis can be restricted to a 2d-dimensional
bundle (over �) of amplitudes and this bundle is G.

We assume without loss of generality that N is the positive direction of the
x1-axis.

Lemma 9. Consider any solution to (1), (2) of the form

(U, V )(x, t) = (Û (x1 − st), V̂ (x1 − st)) exp(i ξ̃ · x̃ + λt),

where x = (x1, x̃), x̃ = (x2, . . . , xd) ∈ R
d−1 and (λ, ξ̃ ) ∈ �. Then, necessarily,

C(s)−1(A1 − s I )(Û (·), V̂ (·))� ∈ G(λ, ξ̃ ).

Proof. Constraints (2) account for ∂ jUk = ∂kU j for all j, k = 1, . . . , d. Hence,
for j, k �= 1, we have iξ j Ûk = iξkÛ j , which, in turn, implies that

Û j = −iξ j Y, for some Y ∈ C
d , all j �= 1. (50)

Equations (2) also imply ∂1U j = ∂ jU1, for j �= 1, which leads to

Û ′
j = iξ j Û1. (51)

From the first equations in (1) we have ∂tUi j = ∂ j Vi for all i, j , implying

λÛ1 − sÛ ′
1 = V̂ ′, (52)

λÛ j − sÛ ′
j = iξ j V̂ , for all j �= 1. (53)
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From (50), (51), and (53), we obtain for j �= 1,

iξ j V̂ = λÛ j − sÛ ′
j

= −iξ jλY − isξ j Û1,

or simply,

V̂ = −(λY + sÛ1).

Hence (Û , V̂ )�(·) has the form⎛
⎜⎜⎜⎜⎜⎜⎝

Û1

Û2
...

Ûd

V̂

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

Û1
−iξ2Y
...

−iξdY
−(λY + sÛ1)

⎞
⎟⎟⎟⎟⎟⎠ .

Multiplying on the left by C(s)−1(A1 − s I ) we get

C(s)−1(A1 − s I )(Û , V̂ )�(·) =

⎛
⎜⎜⎜⎜⎜⎝

−s I 0 · · · 0 −I
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0
−B1

1 −B1
2 · · · −B1

d −s I

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Û1
−iξ2Y
...

−iξdY
−(λY + sÛ1)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

λY
iξ2Y
...

iξdY
Z

⎞
⎟⎟⎟⎟⎟⎠ ∈ G(λ, ξ̃ ),

where Z := (s2 − B1
1 )Û1 + (i

∑
j �=1 ξ j B1

j − λs I )Y . This proves the result. �
Proof of Theorems. At every point (λ, ξ̃ ) ∈ �, the isomorphismJ (λ, ξ̃ ) : C

2d →
G, with matrix representation

J =

⎛
⎜⎜⎜⎜⎜⎝

λI 0
iξ2 I 0
...

...

iξd I 0
0 I

⎞
⎟⎟⎟⎟⎟⎠ , (54)

translates between G and its natural coordinates representation which was intro-
duced in Section 4. For example, the stable and unstable right bundles of M readily
lift to stable and unstable bundles of A as

Řs(λ, ξ̃ ) := J (λ, ξ̃ )R̂s(λ, ξ̃ ),

Řu(λ, ξ̃ ) := J (λ, ξ̃ )R̂u(λ, ξ̃ ).
(55)
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Note that Řs and Řu are not both the full stable and unstable bundle of A, since
amplitudes associated with the singular frequency µ∗ are not captured. However,
the latter are exactly the ones which are not compatible with the constraint (2),
while Řs and Řu comprise all stable and unstable amplitudes which are compatible
with the constraint. Consequently, we simply work directly with R̂s, R̂u .

Using the jump conditions (5), (6), here

−s[U1] − [V ] = 0,

−s[V ] − [σ(U )1] = 0,

[U j ] = 0, for all j �= 1,

we find the jump vector

Q =

⎛
⎜⎜⎜⎜⎜⎝

λ[U1]
isξ2[U1]

...

isξd [U1]
−(λs[U1] + i

∑
j �=1 ξ j [σ(U ) j ])

⎞
⎟⎟⎟⎟⎟⎠ .

Thus

Q = C(s)J Q̂ with Q̂ =
( [U1]

−(λs[U1] + i
∑

j �=1 ξ j [σ(U ) j ])
)

and we work directly with Q̂.
These considerations together with Lemma 9 and the findings of Section 4 on

the matrix field M show that 	̂ indeed controls the linear stability in the affirmative
((i)i ) as well as in the negative ((i)i i )—in coordinates, on state space, which differ
from the original ones, that is the conserved quantities, by the linear transformation

C(s)−1(A1(U )− s I ).

By Lemma 5, this transformation is regular, also if s = 0. Together with (H4), this
uniformity makes the whole involved nonlinear analysis of [8, 21, 22] applicable,
also if s = 0, and allows us to define, in turn,

K(U±) := (A1(U
±)− s I )−1C(s)J .

Theorem 1 is proved.
Theorem 1 given, Theorem 2 is proved in exactly the same way as Lemma 1.

Finally, Corollary 1 is a special case of Theorem 1, of course exactly with s = 0,
which we have accentuated because of its importance. �
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