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Abstract

This paper considers phase boundaries governed by regular kinetic relations as first proposed by Abeyaratne and

Knowles [1990. On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38

(3), 345–360; 1991. Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114,

119–154]. It shows that static configurations of hyperelastic materials, in which two different martensitic (monoclinic)

states meet along a planar interface, are dynamically stable towards fully three-dimensional perturbations. For that

purpose, the reduced stability (or reduced Lopatinski) function associated to the static twin [Freistühler and Plaza, 2007.

Normal modes and nonlinear stability behavior of dynamic phase boundaries in elastic materials. Arch. Ration. Mech.

Anal. 186 (1), 1–24] is computed numerically. The results show that the interface is weakly stable under Maxwellian

kinetics expressing conservation of energy across the boundary, whereas it is uniformly stable with respect to linearly

dissipative kinetic rules of Abeyaratne and Knowles type.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

At appropriate temperatures, certain crystalline materials are characterized by a multiplicity of preferred
martensitic states of deformation. Nonlinear elasticity theory (Ball and James, 1987, 1992) models such
materials by a stored-energy density

W : R3�3
þ �!½0;þ1Þ (1)

which, as a frame-indifferent function of the deformation gradient F 2 R3�3
þ , has a non-convex, multiple well

structure with several global minima. Being any of these minima a martensitic deformation state, each
corresponding well is called a martensitic phase. Many such materials allow for pairs ðF�;FþÞ of energy
e front matter r 2007 Elsevier Ltd. All rights reserved.
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minimizing martensitic states which satisfy the Hadamard condition,

Fþ � F� ¼ a� m (2)

for some a; m 2 R3, aa0; jmj ¼ 1. In this case, F� and Fþ are called rank-one connected. Hadamard condition
implies the existence of a continuous deformation with planar interface separating layers in which the
deformation gradient is either Fþ or F� at each side of the plane. Such a configuration,

F0ðxÞ ¼
F�; x � mo0;

Fþ; x � m40;

(
x 2 R3, (3)

is called a martensite twin.
Let us identify the elastic body at rest with its reference configuration O � R3. Mathematically, the function

ðF�; v�Þðx; tÞ:¼ðF0ðxÞ; 0Þ; ðx; tÞ 2 O� ½0;þ1�,

is a time-independent (static) weak solution to the equations of non-thermal elastodynamics in the absence of
external forces,

Ft �rxv ¼ 0,

vt � divxsðFÞ ¼ 0, ð4Þ

together with the constraint

curlx F ¼ 0. (5)

Here, sðFÞ denotes the (first) Piola–Kirchhoff stress tensor

s ¼
qW

qF
,

and the spatial and temporal derivatives of the local deformation X : O� ½0;þ1Þ ! R3,

Fðx; tÞ ¼ rxX 2 R3�3 and vðx; tÞ ¼ Xt 2 R3 (6)

(defined component-wise by,

Fij ¼
qXi

qxj

and vi ¼
qXi

qt
,

for all i; j ¼ 1; 2; 3), denote the possibly time-dependent deformation gradient and local velocity, respectively,
of the elastic material.

The system of equations (4) accounts for the basic balance laws of continuum mechanics (see, e.g.,
Dafermos, 2005), assuming that no thermal effects play a role, and that the forces within the medium derive
from the energy density function W . The curl-free constraint (5) is a short-cut for the compatibility equations

qxk
Fij � qxj

Fik ¼ 0; i; j; k ¼ 1; 2; 3,

which are clearly a consequence of Eqs. (6).
This paper addresses the stability of martensite twins under the viewpoint of continuum elastodynamics.

More precisely, given a multidimensional smooth perturbation (or a small wave impinging on the interface) of
the piecewise smooth initial data (3), is there a local solution to Eqs. (4) with the same wave pattern? In other
words, will solutions ðF; vÞ to the dynamic system of equations, whose initial data ðF; vÞðx; 0Þ are only near to—
but not identical with—ðF0ðxÞ; 0Þ, be close and similar to—or far and qualitatively different from—ðF�; v�Þ?
Considering Eq. (3) as a localized planar sharp interface, we are then concerned with the well-posedness of the
associated Cauchy problem for Eqs. (4) with piecewise smooth initial data (3).

Localized traveling discontinuities arise naturally as piecewise smooth solutions to Eqs. (4), and must satisfy
canonical jump conditions of Rankine–Hugoniot type expressing conservation across the interface. They are
called shocks when they separate states in the same martensitic phase, and phase boundaries when the states on
either side are in different phases. Martensite twins like Eq. (3) are static examples of the latter. Due to non-
convexity of the stored energy W , the system of conservation laws is of mixed-type, that is, the system changes
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from hyperbolic to elliptic in some regions of space. Phase boundaries, then, connect two states belonging to
two different connected components of the hyperbolic region, and travel at subsonic speeds smaller than the
local wave speeds obtained via linearization of the equations around the states at both sides of the interface.

Dynamic problems involving elastic phase boundaries are highly non-unique (Ericksen, 1975). In contrast
to shocks, the propagation speed of phase boundaries cannot be completely determined by the constitutive law
and momentum balance (James, 1980). As a result, an additional criterion is needed to determine the dynamics
of the traveling discontinuity. There is no consensus, however, about its form. In most theories, it is usually
prescribed as a constitutive kinetic relation which, in the simplest scenario, relates the normal velocity of the
discontinuity with the driving force across the interface (Abeyaratne and Knowles, 1990, 1991). The kinetic
relation induces an additional jump condition or kinetic rule which, just like the Rankine–Hugoniot jump
conditions, interrelates the two states on either side of the boundary with its space normal and velocity.

Thanks to the fundamental work of Majda (1983a,b) and Métivier (1990), it is now known that the
nonlinear stability of such traveling fronts is determined by the Lopatinski conditions of linear hyperbolic
problems (Kreiss, 1970). We briefly describe the main ideas of Majda’s method. Prescribing a multi-
dimensional perturbation of the planar front leads to a free-boundary transmission problem, where the
transmission equations are the Rankine–Hugoniot conditions (and, in the case of phase boundaries, the
kinetic jump condition as well). Introducing the equation of the shock as an extra unknown, and after a shock-
localization procedure (a change of coordinates permitted by the finite propagation speed), one changes the
transmission problem into an initial boundary value problem (IBVP) in a half space. A linearization of the
transformed system about the shock yields a linear hyperbolic IBVP with constant coefficients, just like the
problems originally studied in the classical work of Kreiss (1970). Majda defined uniform stability of the shock
front as L2 strong well-posedness of the constant coefficients IBVP, leading to the uniform Lopatinski condition

of Kreiss (see Majda, 1983a). To arrive at such condition one does a plane-wave analysis of the linearized
problem. Thus, the starting point is the Fourier decomposition in normal modes of the constant coefficients
linearized system. Majda then shows that the linearized uniform stability condition implies nonlinear stability,
that is, well-posedness of the Cauchy problem associated to the full nonlinear equations, by mean of a Newton
type iteration scheme (Majda, 1983a). The local-in-time existence of multidimensional shock waves also
depends on the uniform stability condition (Majda, 1983b). Majda’s work was later refined by Métivier (1990)
using paradifferential calculus techniques and taking into account the weak (small-amplitude) limit.

Therefore, their analyses reduce the nonlinear stability of classical (Laxian) shock waves (Lax, 1957) to the
verification of the uniform Lopatinski condition. Subsonic phase boundaries can be associated, in turn, to
non-classical shocks of undercompressive type (Freistühler, 1995). It was Freistühler (1998) who first
recognized the necessity to incorporate the kinetic jump condition into Majda’s plane-wave analysis. Under
Freistühler’s suggested strategy, the Majda–Métivier theory was later extended by Coulombel (2003), who
showed that the uniform Lopatinski condition implies nonlinear stability of undercompressive shocks, and
subsonic phase boundaries in continuum mechanics fit into this setting. For example, the uniform Lopatinski
condition for moving phase boundaries in the case of two-phase fluid flow has been extensively studied by
Benzoni-Gavage (1998, 1999). Recently, Freistühler and Plaza (2007) have shown that for the equations of
hyperelasticity, one can perform the plane-wave analysis needed to arrive at the stability conditions in a
reduced space of amplitudes which are compatible with the curl-free constraint (5), leading to the definition of
the reduced Lopatinski function which controls the nonlinear stability behaviour of the interface. Technically
(and physically!) their reduction allows us to incorporate static phase boundaries into the analysis.

This paper is devoted to study the stability condition (and consequently, to the nonlinear dynamic stability
behaviour) pertaining to a particular physical example of a static martensite twin. We have chosen an energy
density modelling orthorhombic-to-monoclinic transformations (Kružı́k and Luskin, 2003), and the static
planar interface twins two monoclinic martensitic phases (Ball and James, 1992). The definition and
calculation of the associated stability function depends crucially on the choice of kinetic relation that rules the
dynamics of the front and of its multidimensional perturbations. The current work considers regular kinetic
relations in their simplest form, as first proposed by Abeyaratne and Knowles (1990, 1991).

In the remainder of the introduction, we describe elastic subsonic phase boundaries and their governing
kinetic relations; define the Lopatinski conditions of multidimensional stability theory; and specify the form of
the particular material we have chosen. Section 2 contains needed properties of the energy density and of the
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kinetic rules. In Section 3 we define precisely the stability (or reduced Lopatinski) function for a martensite
twin and make some simplifications which help greatly in its evaluation. Section 4 describes how to
numerically compute the stability function: we describe the numerical procedure and the key ideas which allow
to conclude stability. Section 5 contains the output of our computations and the stability results for the
particular elastic material under consideration. We briefly discuss, in Section 6, the limitations and possible
extensions of the present study.

Notation: In this paper, R3�3
þ denotes the set of all 3� 3 matrices of positive determinant, with identity

I 2 R3�3
þ . With respect to the canonical (column) basis fêjg

3
j¼1 of R

3, the Piola–Kirchhoff stress tensor sðFÞ has
ði; jÞ-component sijðFÞ ¼ qW=qFij , for 1pi; jp3. Fj and sj denote the jth column of F and s, respectively. To
express the second derivatives of the energy, for each pair ði; jÞ, we define the 3� 3 matrix fields
B

j
iðFÞ ¼ qsj=qFi, whose ðl; kÞ-entry

1 is

ðB
j
iðFÞÞlk ¼

q2W

qFljqFki

.

The B
j
i are mutual transposes, ðB

j
iÞ
>
¼ Bi

j ; 1pi; jp3; and define the acoustic tensor as

Nðx;FÞ ¼
X3
i;j¼1

xixjB
j
iðFÞ, (7)

for all F 2 R3�3 and x 2 R3. When evaluating at the wells (22), we write B
j	
i :¼B

j
iðF
	Þ and C	:¼ðF	Þ>F	.

Eqs. (4) constitute a system of conservation laws of form

ut þ
X

j

f jðuÞxj
¼ 0,

with state variables and fluxes

u ¼

F1

F2

F3

v

0
BBB@

1
CCCA 2 R12�1 (8)

and

f ðuÞ ¼ �

v 0 0

0 v 0

0 0 v

sðFÞ1 sðFÞ2 sðFÞ3

0
BBBB@

1
CCCCA 2 R12�3, (9)

respectively. Derivatives are written according to custom as Dyg, with ðDygÞij ¼ qgi=qyj. For short, DðF;vÞg will
denote DðF1;F2;F3;vÞg, for each function g. Given any function f of the state variables, we denote the jump across
the interface as ½f � ¼ f þ � f �, and the mean value as hf i ¼ 1

2
ðf þ þ f �Þ.

Due to finite speed of propagation and the fact that we are interested in the local-in-time, local-in-space
evolution near the interface, we assume for the rest of the paper that O ¼ R3, meaning no loss of generality.
1.1. Elastic phase boundaries

Suppose ðFþ; vþÞ and ðF�; v�Þ are two constant states in R3�3
þ � R3. Assume the energy density W is rank-one

convex at F ¼ F	, that is, both the acoustic tensors Nðx;F	Þ are positive definite for all x 2 R3, xa0 (Ciarlet,
1988), assuring that system (4) is hyperbolic in open neighborhoods of F ¼ F	 (see, e.g., Dafermos, 2005).
1Note that the ðl; kÞ-component of the second-order tensor B
j
i is the ðljkiÞ-entry of the fourth-order elasticity (or stiffness) tensor

Aljki ¼ q2W=qFljqFki (Ciarlet, 1988).
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Moving planar phase boundaries are weak solutions to system (4) of the form

ðF; vÞðx; tÞ ¼
ðF�; v�Þ; x � n� sto0;

ðFþ; vþÞ; x � n� st40;

(
(10)

which travel at speed s 2 R in the constant direction n 2 R3; jnj ¼ 1, n ¼ ðn1; n2; n3Þ
>. These fronts satisfy

canonical Rankine–Hugoniot jump conditions associated to Eqs. (4) and (5), having the form

�s½F� � ½v� � n ¼ 0,

�s½v� � ½sðFÞ�n ¼ 0,

½F� � n ¼ 0, ð11Þ

and their speed s satisfies the subsonicity condition

0ps2ominfeigenvalues of Nðn;F	Þg. (12)

Note that we have included the static case s ¼ 0 into definition (12). The planar front travels in the direction of n,
which points out to the positive side by convention. If vn denotes the velocity of propagation in the direction n,
then vn ¼ s. Under such assumptions, the planar front corresponds to an undercompressive shock (Freistühler,
1995), as the sum of the number of outgoing characteristics at both sides of the shock equals the dimension of
the state space (in this case, n ¼ 12, according to Eq. (8); see Freistühler and Plaza, 2007).

1.2. Kinetics

The speed s of such a subsonic planar phase boundary cannot be determined solely by Eqs. (4) and (11), and
one needs one further jump condition. In the simplest case, a kinetic rule is given by an equation of the form

gððF�; v�Þ; ðFþ; vþÞ; s; nÞ ¼ 0, (13)

interrelating the two states on either side (at some point) of the moving boundary with its space–time normal
ðn; sÞ (at that point). For non-planar moving phase boundaries, the same jump conditions apply pointwise. The
precise circumstances under which the motion of phase boundaries in real materials can be captured by a kinetic
rule of this simple kind, seem currently not clear from the literature. In the present paper we simply assume such
circumstances and consider rules that, with some regular (at least once differentiable) real valued function

h ¼ hððF�; v�Þ; ðFþ; vþÞ; s; nÞ,

are of form (13) with

g ¼Fþ h, (14)

FðFþ;F�; nÞ:¼½W ðFÞ� � n>½F�>hsðFÞin, (15)

and compatible with some martensite twin (3) in the sense that

hððF�; 0Þ; ðFþ; 0Þ; 0; mÞ ¼ 0. (16)

Such kinetic rules (14) have been introduced by Abeyaratne and Knowles (1990, 1991) based on the principles of
irreversible thermodynamics. The quantity FðFþ;F�; nÞ is often called the driving traction (or driving force)
across the boundary (Abeyaratne and Knowles, 1990). In its simplest form, a kinetic relation is given by
vn ¼ fðFÞ, where f is a (sometimes invertible) scalar valued function. In such cases it prescribesF as a function
of the speed s, and determines the form of h above. In particular, the present study considers both the Maxwell

(or Hugoniot) rule, corresponding to

h 
 0 identically, (17)

expressing conservation of energy across the interface, and regular Abeyaratne– Knowles rules, corresponding to
h satisfying

h is a differentiable function of its parameters, (18a)
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hðð�; �Þ; ð�; �Þ; 0; �Þ ¼ 0 identically, (18b)

h40 for so0; ho0 for s40, (18c)

ðDshÞjððF� ;0Þ;ðFþ;0Þ;0;mÞo0. (18d)

The regularity assumption (18a) is one of the sufficient conditions for the analysis of Freistühler and Plaza
(2007). In many kinetic models, condition (18b) is a common requirement at the static configuration
(Abeyaratne and Knowles, 2006). Inequalities (18c) simply mean that the dissipation inequality

vnFX0

holds, which is equivalent to imposing Clausius–Dulhem inequality along the interface (Abeyaratne and
Knowles, 1990). Finally, condition (18d) is a sharper requirement on the static phase boundary inherited by the
present stability study.

1.3. Stability of subsonic elastic phase boundaries

Assume Eq. (10) is a subsonic phase boundary satisfying Eq. (12), weak solution to Eq. (4), for which jump
conditions (11) together with an already prescribed regular kinetic jump condition of form (13), hold. Suppose
W is rank-one convex in open neighborhoods of F ¼ F	, and that the constant multiplicity condition of
Métivier (2000) is satisfied (see Section 2.2 below for its precise statement).

The starting point of the stability analysis is the Fourier decomposition in normal modes of the constant
coefficients linearized problem at the end states. For each n 2 R3, define the compact set of spatial-time
(Fourier–Laplace) frequencies as

S:¼fðl; xÞ 2 C� R3 : Re lX0; x � n ¼ 0; jlj2 þ jxj2 ¼ 1g,

with interior

Sþ:¼S \ fRe l40g.

After linearizing system (4) at the end states and after shock localization (see, e.g., Majda, 1983a; Freistühler,
1998), one may substitute a normal mode ansatz of form

ðF	; v	Þðx; tÞ ¼ ðF̂	ðx � n� stÞ; v̂	ðx � n� stÞÞ eix�xþlt, (19)

for x � n� st_0, and with ðl; xÞ 2S, solution to both (4) and the constraint (5). The normal modes
analysis of such solutions (Freistühler and Plaza, 2007) leads to the definition of the reduced2 Lopatinski
function

D :S�!C, (20)

Dðl; xÞ ¼ det
R̂sðF�Þ Q̂ R̂uðFþÞ

p̂� q̂ p̂þ

 !
, (21)

where

Q̂ðl; xÞ ¼
½F�n

�ls½F�n� i½sðFÞ�x

 !
2 C6�1,

q̂ðl; xÞ ¼ �lðDsgÞ þ iðx �DngÞ 2 C1�1,

p̂�ðl; xÞ ¼ �ðDðF� ;v�ÞgÞKs;nðF
�ÞR̂sðF�Þ 2 C1�3,

p̂þðl; xÞ ¼ ðDðFþ;vþÞgÞKs;nðF
þÞR̂sðFþÞ 2 C1�3.
2We call it reduced in the sense that its definition is restricted to the invariant subspace of normal modes (19) satisfying the constraint (5).
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Here R̂s;uðFÞ 2 C6�1 represent the right stable and unstable invariant spaces of a matrix field Ms;nðFÞ :S!
C6�6 for each F near F	, and Ks;nðFÞ :S! C12�6 denote continuous mappings. M and K are given by
explicit formulae in terms of the first and second derivatives of the energy function W (for their precise form in
the case of a static interface, see Section 3; for the general case of a dynamic phase boundary, the reader is
referred to Freistühler and Plaza, 2007). In Eq. (21), Q̂ is the ‘‘jump vector’’ associated to Rankine–Hugoniot
conditions (Majda, 1983a), and q̂ denotes its kinetic counterpart (Freistühler, 1998). All elements in Eq. (21)
are evaluated at the end states ðF	; v	; s; nÞ and depend continuously on its parameters for all subsonic s

including s ¼ 0. Furthermore, as a function of ðl; xÞ, D is analytic in Sþ and continuous in the whole set S.
In spite of its somewhat convoluted definition, the significance of D is precisely that it measures the solvability of

the linearized system by wave solutions that violate the well-posedness L2-estimate of Kreiss (for its precise form,
see Majda, 1983a; Métivier, 1990). Whenever a zero of D occurs, the intersection of initial conditions at z:¼x �

n� st ¼ 0 that accept spatially decaying solutions as z!	1 is non-trivial, and a solution with time growth rate
expðtRe lÞ exists. Therefore, one may verify that a necessary condition for well-posedness of the linearized
problem is that D does not vanish in the interior set Sþ. In this case we say that D satisfies the Lopatinski
condition, and that the front is weakly stable. Zeroes of D along the imaginary axis ðl; xÞ 2S \ fRe l ¼ 0g for
weakly stable interfaces refer to the existence of surface waves localized near z ¼ 0. A stronger condition, called the
uniform Lopatinski condition, namely, that D has no zeroes in the whole set S (including the imaginary axis
fRe l ¼ 0g), ensures the well-posedness of the nonlinear system. In this case, we say the front is uniformly (or

strongly) stable. Finally, when D vanishes for some point in Sþ, we say the front is strongly unstable. In this last
case the instability is of Hadamard type and it is so violent that we never observe the discontinuity evolve in time.

1.4. Main results

The goal of this paper is to show that at least one widely considered example of a martensite twin is weakly
stable under the Maxwell rule (17), and uniformly stable under regular Abeyaratne–Knowles rules (18).
Following Ball and James (1987), the example we have chosen twins two monoclinic deformations

Fþ ¼

1 0 0

� 1 0

0 0 1

0
B@

1
CA and F� ¼

1 0 0

�� 1 0

0 0 1

0
B@

1
CA, (22)

for a material parameter �40, which are clearly rank-one connected,

Fþ � F� ¼ 2�ê2 � ê1,

and satisfy detFþ ¼ detF� ¼ 1. The rotationally invariant energy wells are defined by

Uþ ¼ SOð3ÞFþ; U� ¼ SOð3ÞF�,

where

SOð3Þ ¼ fQ 2 R3�3 : Q>Q ¼ I; detQ ¼ 1g

is the group of proper rotations. As the stored-energy function, we concretely take

W ðFÞ ¼
1

32
C�

1þ �2 � 0

� 1 0

0 0 1

0
B@

1
CA

�������
�������
2

C�

1þ �2 �� 0

�� 1 0

0 0 1

0
B@

1
CA

�������
�������
2

, (23)

where CðFÞ ¼ F>F is the right Cauchy–Green strain, and j � j denotes the Frobenius norm on R3�3,

jMj2 ¼ Tr ðM>MÞ.

Function (23) is frame-indifferent, as W ðQFÞ ¼W ðFÞ for all Q 2 SOð3Þ, and attains its minimum only on the
set U ¼ U� [Uþ, that is, W ðFÞ ¼ 0 if and only if F 2 U. This energy density, a choice following Kružı́k and
Luskin (2003), is an example of the simplest multiple well structure where the number of different variants is 2,
namely, a double-well energy modelling orthorhombic-to-monoclinic transformations (Ball and James, 1992).
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For this particular material, we numerically evaluate the Lopatinski function D associated to Eqs. (22) and
(23), and find that, (i) with Maxwell kinetics, D has zeroes on the boundary of S and no zeroes in the interior of

S (weak stability), while, (ii) with various choices of regular Abeyaratne– Knowles kinetics, D has no zeroes on all

of S (uniform stability).
2. Energy density function and kinetic rules

This section gathers properties of the energy density function (23) and the kinetic rules (17) and (18), which
are needed for the computation of the stability function.
2.1. Derivatives of the stress

First, we compute the matrices B
j
i containing the second derivatives of the energy. Denoting

F	ðFÞ:¼jC� C	j2, then clearly W ðFÞ ¼ 1
32
FþðFÞF�ðFÞ, with F	ðF	Þ ¼ 0 and F	ðF�Þ ¼ 8�240. By direct

computation,

ðDF1
F	ÞðFÞ ¼ 4ððjF1j

2 � ð1þ �2ÞÞF1 þ ðF
>
2 F1 � �ÞF2 þ ðF

>
1 F3ÞF3Þ,

ðDF2
F	ÞðFÞ ¼ 4ððjF2j

2 � 1ÞF2 þ ðF
>
2 F1 � �ÞF1 þ ðF

>
2 F3ÞF3Þ,

ðDF3
F	ÞðFÞ ¼ 4ððjF3j

2 � 1ÞF2 þ ðF
>
3 F1 � �ÞF1 þ ðF

>
2 F3ÞF2Þ. ð24Þ

Since the stress s vanishes at the wells, it is easy to see that for all i; j,

B
j	
i ¼

1
32
F�ðF	ÞðD2

FjFi
F	ÞðF	Þ ¼ 1

4
�2ðD2

FjFi
F	ÞðF	Þ.

From Eq. (24) we obtain

ðD2
F1F1

F	ÞðFÞ ¼ 4ð2F1 � F1 þ ðjF1j
2 � ð1þ �2ÞÞIþ F2 � F2 þ F3 � F3Þ,

ðD2
F2F2

F	ÞðFÞ ¼ 4ð2F2 � F2 þ ðjF2j
2 � 1ÞIþ F1 � F1 þ F3 � F3Þ,

ðD2
F3F3

F	ÞðFÞ ¼ 4ð2F3 � F3 þ ðjF3j
2 � 1ÞIþ F1 � F1 þ F2 � F2Þ,

ðD2
F1F2

F	ÞðFÞ ¼ ðD2
F2F1

F	Þ
>
¼ 4ðF1 � F2 þ ðF

>
2 F1 � �ÞIÞ,

ðD2
F1F3

F	ÞðFÞ ¼ ðD2
F3F1

F	Þ
>
¼ 4ðF1 � F3 þ ðF

>
1 F3ÞIÞ,

ðD2
F2F3

F	ÞðFÞ ¼ ðD2
F2F1

F	Þ
>
¼ 4ðF2 � F3 þ ðF

>
2 F3ÞIÞ, ð25Þ

and evaluating at the wells we readily get,

B1	
1 ¼ �

2

2 	2� 0

	2� 1þ 2�2 0

0 0 1

0
BB@

1
CCA; B1	

2 ¼ ðB
2	
1 Þ
>
¼ �2

0 1 0

0 	� 0

0 0 0

0
BB@

1
CCA,

B2	
2 ¼ �

2

1 	� 0

	� 2þ �2 0

0 0 1

0
BB@

1
CCA; B1	

3 ¼ ðB
3	
1 Þ
>
¼ �2

0 0 1

0 0 	�

0 0 0

0
BB@

1
CCA,

B3	
3 ¼ �

2

1 	� 0

	� 1þ �2 0

0 0 2

0
BB@

1
CCA; B2	

3 ¼ ðB
3	
2 Þ
>
¼ �2

0 0 0

0 0 1

0 0 0

0
BB@

1
CCA. ð26Þ
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From Eq. (26) one finds that

ðB1	
1 Þ
�1
¼ ��2

1
2
ð1þ 2�2Þ �� 0

�� 1 0

0 0 1

0
B@

1
CA. (27)

Note that the eigenvalues of B1	
1 are

k1 ¼
1

2
�2 3þ 2�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 2�2Þ2 � 8

q� �
,

k2 ¼ �
2,

k3 ¼
1

2
�2 3þ 2�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 2�2Þ2 � 8

q� �
, ð28Þ

with 0ok1ok2ok3 and constant multiplicity 1. Therefore, the six characteristic speeds associated to the front
are aj ¼ 	

ffiffiffiffi
kj

p
, j ¼ 1; 2; 3. The analysis of Freistühler and Plaza (2007) applies to all subsonic propagating

fronts with speed satisfying 0ps2okj for all j.

2.2. Rank-one convexity and constant multiplicity assumption

In this subsection, we verify two hypotheses made by Freistühler and Plaza (2007), so as to guarantee that the
results of our computations really allow for the said conclusions. To ensure hyperbolicity at the end states, the
first hypothesis is the rank-one convexity of W at the wells, or equivalently, that Legendre– Hadamard condition,

z>Nðx;F	Þz40 for all z; x 2 R3nf0g, (29)

holds (Ciarlet, 1988). In order to verify Eq. (29) we express W in terms of the right Cauchy–Green strain as

W¼:Ŵ ðC11;C22;C33;C12;C13;C23Þ,

with Hessian

ðD2
CŴ ÞjC¼C	 ¼ �

2
1
2
I 0

0 I

 !
40,

for all �40 and evaluated, of course, at the minima C ¼ C	. Therefore, it is easy to see that the quadratic form
in Eq. (29) can be written as

b	ðx; zÞ:¼z>Nðx;F	Þz ¼ x>HðF	; zÞ>ðD2
CŴ ÞjC¼C	HðF

	; zÞx,

where the 6� 3 matrix HðF	; zÞ is defined by

HðF	; zÞ ¼

2ðF	1 Þ
>z 0 0

0 2ðF	2 Þ
>z 0

0 0 2ðF	3 Þ
>z

ðF	2 Þ
>z ðF	1 Þ

>z 0

ðF	3 Þ
>z 0 ðF	1 Þ

>z

0 ðF	3 Þ
>z ðF	2 Þ

>z

0
BBBBBBBBB@

1
CCCCCCCCCA
.

Since for each za0, HðF	; zÞ has full rank (as detF	40) and in view of ðD2
CŴ ÞjC¼C	40, then clearly

b	ðx; zÞ40 for all z; x 2 R3nf0g, that is, W is rank-one convex at F ¼ F	 and the system is hyperbolic in open
neighborhoods of the two wells.

Another (though actually not essential) requirement for the analysis is the constant multiplicity condition of
Métivier (2000), namely, that the eigenvalues of Nðx;FÞ are all semi-simple (the algebraic and geometric
multiplicities coincide) with constant multiplicities for all F near Fþ or F�, and for all xa0. By continuity of
the eigenvalues, it suffices to check this condition at the wells, as the property is preserved in open
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neighborhoods of F ¼ F	. Notice that Nðrx;F	Þ ¼ r2Nðx;F	Þ for all r40. Hence, after normalization, it
suffices to consider jxj ¼ 1 which we parametrize in spherical coordinates by x1 ¼ sinc cos y, x2 ¼ sinc sin y,
and x3 ¼ cosc, with y 2 ½0; 2p�, c 2 ½0;p�. One can easily check Métivier’s condition numerically and find that
it is satisfied by the energy (23) at the wells (22) within an open set of the material parameter � containing the
segment ½0:5; 1�. For instance, Fig. 1 shows the computed eigenvalues kj of Nðx;F	Þ, for � ¼ 0:5, in a mesh of
angles ðc; yÞ, smoothly interpolated as surfaces. It turns out that the eigenvalues are all simple for each value
of x.
2.3. Derivatives of kinetic rules

In this section we gather the derivatives of h and F from Eqs. (16)–(18), with respect to their parameters
ðFþ; vþÞ; ðF�; v�Þ, n, and s. Noticing that for each i; j, we have

qF	ij ðn
>½F�>hsðFÞinÞ ¼ 	 nj

X
k

nkhsðFÞiki þ
1

2
n>½F�>

X
l

nl qF	ij ðsðF
	ÞlÞ

¼ 	 nj

X
k

nkhsðFÞiki þ
1

2

X
l;k

nlð½F�nÞkðB
l
j

	
Þki,

one gets,

DðF	;v	ÞF ¼ 	sðF	Þ>1 � n1n
>hsðFÞi> �

1

2
n>½F�>

X3
j¼1

njB
j	
1 ;

 

	 sðF	Þ>2 � n2n
>hsðFÞi> �

1

2
n>½F�>

X3
j¼1

njB
j	
2 ,

	sðF	Þ>3 � n3n
>hsðFÞi> �

1

2
n>½F�>

X3
j¼1

njB
j	
3 ; 0

!
2 R1�12 ð30Þ

(where each element is a 1� 3 block), and

DnF ¼ n>ð½F�>hsðFÞi þ hsðFÞi>½F�Þ 2 R1�3, (31)

DsF 
 0. (32)
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Fig. 1. Plot of the eigenvalues of Nðx;F	Þ, x ¼ ðsinc cos y; sinc sin y; coscÞ on a mesh ðc; yÞ 2 ½0;p� � ½0; 2p�. We set the material

parameter as � ¼ 0:5. The three surfaces correspond to the continuous values of the three real eigenvalues kj , j ¼ 1; 2; 3. The azimuthal

view on the right shows that the eigenvalues are simple and never coalesce.
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Furthermore, we obviously have

DðF	 ;v	Þh ¼ 0

Dnh ¼ 0
at ððFþ; 0Þ; ðF�; 0Þ; 0; ê1Þ, (33)

both for Maxwell and Abeyaratne–Knowles rules.

3. The reduced Lopatinski function for a martensite twin

In view of our choice of the wells (22), let us assume that the normal to the static front (3) points out in the
direction of the x1-axis, that is, that m ¼ ê1. The transversal directions are thus given by x ¼ ð0; x2; x3Þ

> with
x1 ¼ 0; we define then ~x:¼ðx2; x3Þ 2 R2 so that the set S of space–time frequencies can be expressed as

S ¼ fðl; ~xÞ 2 C� R2 : jlj2 þ j~xj2 ¼ 1;Re lX0g, (34)

with interior,

Sþ ¼S \ fRe l40g.

Consider the two continuous matrix fields M	 : S! C6�6 defined by

M	ðl; ~xÞ:¼
M	11 M	12

M	21 M	22

 !
; M	ij : S! C3�3, (35)

with

M	11 ¼ iðB1	
1 Þ
�1
ðx2B

1	
2 þ x3B

1	
3 Þ,

M	12 ¼ � ðB
1	
1 Þ
�1,

M	21 ¼ ðx2B
2	
1 þ x3B

3	
1 ÞðB

1	
1 Þ
�1
ðx2B

1	
2 þ x3B

1	
3 Þ � l2I� ðx22B

2	
2 þ x23B

3	
3 þ x2x3ðB

2	
3 þ B3	

2 ÞÞ,

M	22 ¼ iðx2B
2	
1 þ x3B

3	
1 ÞðB

1	
1 Þ
�1. ð36Þ

The main observation of Freistühler and Plaza (2007) is that the curl-free constraint (5) reduces the normal
modes analysis for the stability of such elastic fronts to a subspace of amplitudes, whose dynamics in the
frequency (or Fourier–Laplace) space is captured by the matrix fields M	. In view of their analysis, the
stability function (21) for such a static planar interface takes the form

Dðl; ~xÞ ¼ det
R̂s
� Q̂ R̂u

þ

p̂� q̂ p̂þ

 !
, (37)

where

Q̂ ¼
½F1�

i½sðFÞ�ð0; ~xÞ>

 !
2 C6�1, (38)

q̂ ¼ �lðDsgÞ þ iðð0; ~xÞ>ðDngÞÞ 2 C1�1, (39)

p̂þ ¼ ðDðFþ ;vþÞgÞKþðl; ~xÞR̂u
þ 2 C1�3,

p̂� ¼ �ðDðF�;v�ÞgÞK�ðl; ~xÞR̂s
� 2 C1�3, ð40Þ

K	ðl; ~xÞ ¼

iðB1	
1 Þ
�1
ðx2B

1	
2 þ x3B

1	
3 Þ �ðB

1	
1 Þ
�1

�ix2I 0

�ix3I 0

�lI 0

0
BBBB@

1
CCCCA 2 C12�6, (41)

and R̂u
þ ¼ R̂u

þðl; ~xÞ 2 C6�3 (resp. R̂s
�) denotes the unstable (resp. stable) space of the matrix field Mþ (resp.

M�). All these elements are evaluated, of course, at the wells, for which W attains its minima, and at s ¼ 0. In
addition, D is analytic in ðl; ~xÞ 2Sþ and continuous in ðl; ~xÞ 2S.
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3.1. Stable and unstable modes

For convenience, let us denote N	ðm; ~xÞ:¼Nðm; x2; x3;F
	Þ, where x1 has been replaced by a complex

parameter m 2 C in expression (7). It has been shown that the eigenvalues b ¼ �im of M	 satisfy the following
characteristic equation:

p	ðmÞ:¼detðN	ðm; ~xÞ þ l2IÞ ¼ 0, (42)

for all ðl; ~xÞ 2S. Moreover, restricting to Sþ, and due to hyperbolicity at the end states, the eigenvalues split
into stable (with Immo0) and unstable (with Imm40) modes. This hyperbolic dichotomy in the dynamical
systems sense was originally pointed out by Hersh (1963). Under the current assumptions, there are exactly
three unstable and three stable eigenmodes (counting multiplicities) for each ðl; ~xÞ 2Sþ, implying that the
stable and unstable spaces of both M	 have constant dimension in all Sþ. These invariant right spaces are
represented by mappings (or bundles) R̂s;u

	 :S! C6�3 arranged in suitable column bases which can be chosen
analytic on Sþ with continuous extensions to all of S. For details, see Freistühler and Plaza (2007) and the
references therein.

From Lemma 6 in the same reference, we reckon that the eigenvector of M	 associated to an eigenvalue
b ¼ �im has the form

r ¼
w

iðmB1	
1 þ x2B

1	
2 þ x3B

1	
3 Þw

 !
, (43)

where

w 2 kerðN	ðm; ~xÞ þ l2IÞ. (44)
3.2. Kinetic rule and jump conditions blocks

In this section we compute the elements in D associated to the classical jump conditions and the kinetic rule.
First, since s ¼ 0 at the wells, we have

Q̂ ¼
Fþ1 � F�1

0

 !
¼ 2�

ê2

0

� �
2 R6�1.

Recalling expressions (30) and (31), specializing them to the case where n ¼ ê1, evaluating at the wells, and
using Eq. (26), we arrive at

ðDsgÞjs¼0 ¼ DsðFþ hÞs¼0 ¼ ðDshÞjs¼0,

ðDngÞjs¼0 ¼ DnðFþ hÞs¼0 ¼ 0,

ðDðF	;v	ÞgÞjs¼0 ¼ DðF	;v	ÞðFþ hÞjs¼0

¼ ð�1
2
½F1�

>B1	
1 ;�1

2
½F1�

>B1	
2 ;�1

2
½F1�

>B1	
3 ; 0Þ

¼ � �3ðð	2�; 1þ 2�2; 0Þ;	�ê>2 ;	�ê
>
3 ; 0Þ 2 R1�12.

Using Eqs. (26) and (27), we also compute

K	ðl; ~xÞ ¼

i

2

0 x2 x3
0 0 0

0 0 0

0
B@

1
CA ��2

�1
2
ð1þ 2�2Þ 	� 0

	� �1 0

0 0 �1

0
B@

1
CA

�ix2I 0

�ix3I 0

�lI 0

0
BBBBBBBB@

1
CCCCCCCCA
.
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Hence,

ðDðFþ ;vþÞgÞjs¼0Kþðl; ~xÞ ¼ � �3ðð2�; 1þ 2�2; 0Þ; �ê>2 ; �ê
>
3 ; 0ÞKþðl; ~xÞ

¼ �ð0; ê>2 Þ 2 R1�6,

ðDðF� ;v�ÞgÞjs¼0K�ðl; ~xÞ ¼ � �3ðð�2�; 1þ 2�2; 0Þ;��ê>2 ;��ê
>
3 ; 0ÞK�ðl; ~xÞ

¼ �ð0; ê>2 Þ 2 R1�6.

3.3. Using the symmetry of the twin

Thanks to the symmetries associated to the martensitic wells, we can simplify the expression for D. For
instance, let

P ¼

1 0 0

0 �1 0

0 0 �1

0
B@

1
CA; P2 ¼ I.

A direct computation yields

PBiþ
i P ¼ Bi�

i for all i,

PB1þ
i P ¼ �B1�

i for all ia1,

PB2þ
3 P ¼ B2�

3 .

This implies that

PNþðm; ~xÞP ¼ N�ð�m; ~xÞ,

for all m 2 C and all ~x 2 R2. Therefore, if w 2 kerðNþðm; ~xÞ þ l2IÞ for some m 2 C, then
Pw 2 kerðN�ð�m; ~xÞÞ þ l2IÞ, and the stable modes ms� at F ¼ F� can be computed from the unstable modes
muþ at the other well, by simply taking ms� ¼ �m

u
þ. Hence, it suffices to compute the unstable modes at F ¼ Fþ.

This symmetry provides a relation between the bundles R̂ as well. By direct computation one finds

PMþ11P ¼ �M
�
11; PMþ12P ¼M�11,

PMþ22P ¼ �M
�
22; PMþ21P ¼M�21,

and letting

L:¼
P 0

0 �P

� �
; L2 ¼ I,

we arrive at the similarity condition

LMþðl; ~xÞL ¼ �M�ðl; ~xÞ, (45)

for all ðl; ~xÞ 2S, which implies that if R̂u
þ is a continuous (analytic) representation on Sþ of the unstable

space of Mþðl; ~xÞ, then the columns of

R̂s
�:¼LR̂

u
þ, (46)

span the stable space ofM�ðl; ~xÞ and constitute an analytic representation onSþ of this space (this follows by
a simple dynamical systems argument). These bundles have continuous, full-rank extensions on the whole set
S. Consequently, it suffices to compute the unstable bundle R̂u

þ. Notice also that ð0; ê>2 ÞL ¼ ð0; ê
>
2 Þ, and that

by Eq. (46), we have

p̂þ ¼ �p̂� ¼ �ð0; ê>2 ÞR̂
u
þ.
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3.4. Using the homogeneity of D

From the definition of D, it is not hard to see that for all r40 and all ðl; ~xÞ, there holds the homogeneity-like
relation

Dðl; ~xÞ ¼ YðrÞDðrl;r~xÞ,

being Y a continuous, non-vanishing factor, such that jYð	1Þj ¼ 1, YðrÞa0. This property follows from the
existence of a lifting matrix field Jðl; ~xÞ with constant rank and linear in l and ~x, which translates between
original and reduced coordinates (Freistühler and Plaza, 2007). Without loss of generality we can assume ~xa0
(see Appendix A). Therefore, we can normalize ðl; ~xÞ 2S by

l! l=j~xj; ~x! ~x=j~xj,

and perform the computations on the set

j~xj ¼ 1; Re lX0; l 2 C,

parametrizing ~x in polar coordinates by

~x ¼ ðcosj; sinjÞ ¼ eij; j 2 ½0; 2pÞ.

Let us denote ~Nþðm;jÞ:¼Nþðm; eijÞ. Since Nþð�m;�~xÞ ¼ Nþðm; ~xÞ for all m and ~x, it suffices to take j 2 ½0;p�.
Finally, as ~Nþð�m;�jÞ ¼ ~Nþðm;jÞ, we can restrict the computations to the quarter circle j 2 ½0; p

2
�, meaning

no loss of generality. From this point on, we write indistinctively Dðl; ~xÞ or Dðl;jÞ to indicate Dðl; eijÞ.
3.5. Summary

After these considerations, the stability function then takes the form

Dðl; ~xÞ ¼ det
LR̂u
þ Q̂ R̂u

þ

�p̂ q̂ p̂

 !
, (47)

with

Q̂ ¼ 2�
ê2

0

 !
2 R6�1,

q̂ ¼ �lðDshÞjs¼0 2 R1�1,

p̂ ¼ �ð0; ê>2 ÞR̂
u
þ 2 C1�3,

L ¼ diagð1;�1;�1;�1; 1; 1Þ 2 R6�6, ð48Þ

for ðl; ~xÞ restricted to the set

Re lX0; l 2 C,

~x ¼ eij; j 2 ½0;p=2�.
4. Evaluating D

In this section we detail how to numerically evaluate the reduced Lopatinski function D associated to the
martensite twin, in such a way that the numerical output provides secure information about the dynamical
stability behaviour of the static interface.
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4.1. Key ideas

4.1.1. The winding number argument

We will look at the family of mappings

l 7!D̄ð�;jÞ; j 2 ½0;p=2�,

for a suitable normalization of the stability function D̄ along the closed contours

l 2 Cr:¼C
þ
r [ C

0
r,

Cþr :¼fl 2 C : jlj ¼ r;Re l40g,

C0
r:¼fl 2 C : l ¼ it; t 2 ½�r;þr�g,

for some r40 sufficiently large. Given that for jljb1 large, Dðl; ~xÞ�Dð1; 0Þa0 (see Appendix A below), the
possible zeroes of D̄ are bounded in l and it suffices to consider contours Cr with finite r40. By the product
formula of mapping degrees (Deimling, 1985), the winding number of the curves l 7!D̄ð�;jÞ with respect to
zero determines the stability of the configuration.

4.1.2. The normalization

There is a major ambiguity in the definition (47), consisting in the freedom to choose specific representations
R̂s
� of the stable space of M�, and R̂u

þ of the unstable space of Mþ. This ambiguity can largely obscure the
picture when one tries to apply the above computational evaluation of the winding number to the unmodified
reduced Lopatinski function D. In fact, in order to proceed correctly in that direction, one would have to
convince oneself that the concrete representations (chosen through formulation and computing methodology)
are not only continuous along the curves Cr, but can be extended, without modification, to continuous matrix
functions of full rank at least on the whole interior of these curves. Given the fact, however, that they are
three-dimensional sub-bundles of C6, there does not seem to exist an easy way of doing such verification. We
completely circumvent this apparent difficulty by considering a normalized version of D,

D̄:¼
D
�jRj

, (49)

with

jRj:¼ detðR̂s
�R̂

u
þÞ ¼ detðLR̂u

þR̂
u
þÞ. (50)

The simple idea of this normalization is that it automatically undoes all possible extraneous winding. In other
words: by whichever concrete factor the original D deviates from what it would be with respect to an
admissible choice Rs

�;R
u
þ of the representation, the scaling denominator jRj deviates from the determinant

detðRs
�R

u
þÞ in exactly that way, and these two effects cancel each other out.

4.1.3. D̄ for Maxwell vs. Abeyaratne– Knowles kinetics

A simple consideration (see Section 4.4 below) on D and jRj shows that

D̄ ¼ D̄0 � lðDshÞ, (51)

where D̄0 is the normalized Lopatinski function associated to Maxwell kinetics. This not only simplifies the
algorithms considerably, but also gives a direct explanation of how the images of the curves Cr change upon
going from vanishing to non-vanishing driving traction. We invite the reader to play with the geometric
associations that formula (51) immediately prompts in that direction.
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4.2. The Lopatinski modes

The essential piece in reliably determining the Lopatinski spaces is the identification of the frequencies. Once
this is done in a secure way, standard algorithms allow to construct the bundle representation R̂u

þ safely. We
now discuss how to properly find the unstable m-roots of

pþðmÞ ¼ detðNþðm; ~xÞ þ l2IÞ ¼
X6
j¼0

ajmj.

After cumbersome but straightforward computations, one finds that the coefficients aj ¼ ajðl; ~x; �Þ are
given by

a6 ¼ 2�6,

a5 ¼ 0,

a4 ¼ l2�4ð2�2 þ 5Þ þ 6�6,

a3 ¼ 2�5x2l,

a2 ¼ 2l4�3ð2þ �2Þ þ l2�4ðð10þ 3�2Þ þ �2x23Þ þ 6�6,

a1 ¼ 2l2�3x2ðl
2
þ �2Þ,

a0 ¼ l6 þ l4�2ð4þ �2Þ þ l2�4ðð5þ �2Þ þ �2x23Þ þ 2�6, ð52Þ

for each ðl; ~xÞ 2 C� R2, with j~xj ¼ 1. Since a6 ¼ 2�640, we implemented a standard algorithm to compute the
roots of the polynomial pþðmÞ ¼ 0. More precisely, we calculated the eigenvalues of

Gðl; ~x; �Þ ¼

�a5=a6 �a4=a6 �a3=a6 �a2=a6 �a1=a6 �a0=a6

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA
,

via a standard Schur factorization for complex non-Hermitian matrices (Trefethen and Bau, 1997).
For values of l with Re l40, the six m-modes of pþðmÞ ¼ 0 are either stable or unstable. Fig. 2 shows the

computed values of stable and unstable modes for l 2 Cþr , that is, along half circles, for different values of
r40. They behave as unstable/stable in trios, with neutral limits as Re l! 0þ.

For values of l along the imaginary axis, neutral modes can occur. These neutral modes, however, are the
continuous limits of stable or unstable modes as Re l! 0þ. When a neutral mode m is the limit of a stable
(resp. unstable) mode we call it neutrally stable (resp. neutrally unstable). Therefore, the roots of pþ come
always in trios of stable/neutrally stable or unstable/neutrally unstable modes.

We designed a direct algorithm to determine the stability nature of the neutral modes along the imaginary
axis, using a simple perturbation method. For each l ¼ it 2 iR we make ~l ¼ itþ d with small d40 and
compute the perturbed eigenmodes. Estimating the minimum distance between the latter and the original
neutral mode, we select the associated stable or unstable mode which, by continuity, tends to the original
neutral m as d! 0þ. In the case of coalescence, that is, when there is a multiple neutral mode, the algorithm
safely keeps track of the perturbed modes already selected, in such a way that it produces exactly three stable/
neutrally stable and three unstable/neutrally unstable values, respecting the hyperbolic dichotomy (it can
happen that a multiple neutral mode is at the same time the limit of stable and unstable modes). In our
computations we take d of order Oð10�6Þ.
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For values of l along the imaginary axis we expect the presence of branch points, for example, values of t for
which the eigenmodes m change from neutral to stable/unstable, or points where two or more modes coalesce.
Fig. 3 shows computed values of the unstable modes along an interesting portion of the imaginary axis,
namely, near zero (for t large the modes are always neutral), and for different values of j. We observe that the
modes coalesce, for instance, at l ¼ 0. To illustrate the phenomenon of neutral to stable/unstable branching,
Fig. 4 depicts the imaginary parts of the unstable modes mu against t 2 ½�1; 1�, again, for different values of j.
The existence of six branch points of real-to-complex type is clear.
4.3. Evaluation of the bundle R̂u
þ

Once the Lopatinski frequencies have been computed, we proceed to assemble the unstable Lopatinski
bundle R̂u

þ according to formula (43). The main step is the computation of the kernel of ~Nþðmuj ;jÞ þ l2I,
where muj is the unstable mode under consideration. For that purpose, we use a simple cross-product algorithm
that calculates wj in Eq. (44) and numerically verifies the result for each unstable/neutrally unstable mode muj .
Following Eq. (43), we assemble the unstable bundle by taking

R̂u
þ ¼ ðr1 r2 r3Þ,
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where each column is given by

rj ¼
wj

iðmuj B
1	
1 þ x2B

1	
2 þ x3B

1	
3 Þwj

 !
; j ¼ 1; 2; 3.

At most points, the constructed bundle is a valid, full-rank representation of the unstable Lopatinski space,
with the exception of a discrete set of branch points associated to multiple modes where non-trivial Jordan
blocks may occur. This factor, however, appears at the same order in both the numerator and the
denominator of Eq. (49), cancelling each other out, and yields the desired effect of the normalization

4.4. Reduction of determinants

Finally, one can make further reductions on the expression for D̄ in order to arrive at formula (51). Suppose
R̂u
þ is a continuous representation of the unstable space of Mþ. Let us define

R̂u
þ¼:

y1

y2

y3

z1

z2

z3

0
BBBBBBBBB@

1
CCCCCCCCCA
, (53)

so that

yj ; zj : S�!C1�3,
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are three-dimensional row vector-valued functions of ðl; ~xÞ. From Eqs. (47) and (48), the reduced Lopatinski
function takes the form

D ¼

y1 0 y1

�y2 2� y2

�y3 0 y3

�z1 0 z1

z2 0 z2

z3 0 z3

��z2 �lðDshÞ �z2

�����������������

�����������������

.

Performing elementary column–row transformations and pivoting on the middle column, we obtain

D ¼ 8

y1 0 y1

z2 0 z2

z3 0 z3

0 0 y3

0 0 z1

0 2� y2

0 �lðDshÞ �z2

��������������������

��������������������

¼ 16�

y1 y1

z2 z2

z3 z3

0 y3

0 z1

0 �z2

�����������������

�����������������

þ 8lðDshÞ

y1 y1

z2 z2

z3 z3

0 y3

0 z1

0 y2

�����������������

�����������������
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¼ 16�2

y1

z2

z3

��������

��������
y3

z1

z2

��������

��������
þ 8lðDshÞ

y1

z2

z3

��������

��������
y3

z1

y2

��������

��������
¼ 8Gð0Þð2�2Gð1Þ þ lðDshÞGð2ÞÞ, ð54Þ

where

Gð0Þðl; ~xÞ:¼

y1

z2

z3

�������
�������; Gð1Þðl; ~xÞ:¼

y3

z1

z2

�������
�������; Gð2Þðl; ~xÞ:¼

y3

z1

y2

�������
�������. (55)

Similarly, from the definition (50) of jRj, we have

jRj ¼

y1 y1

�y2 y2

�y3 y3

�z1 z1

z2 z2

z3 z3

��������������

��������������
¼ 8

y1 y1

z2 z2

z3 z3

0 z1

0 y2

0 y3

���������������

���������������
¼ 8

y1

z2

z3

�������
�������
z1

y2

y3

�������
������� ¼ 8Gð0ÞGð2Þ.

In view of the normalization (49), this finally implies that

D̄ ¼ D̄0 � lðDshÞ, (56)

where

D̄0 ¼ �2�
2

y3

z1

z2

�������
�������

z1

y2

y3

�������
�������
¼ �2�2

Gð1Þ
Gð2Þ

(57)

is the normalized Lopatinski function associated to Maxwellian kinetics.
Thus, all we need to do is safely compute the bundle R̂u

þ, rearrange its entries in the two 3� 3 determinants
Gð1Þ and Gð2Þ, and evaluate their quotient (57).

5. Output and stability results

This section displays the results of our computations, in which we fixed the value of the material parameter
as � ¼ 0:5. In what follows we reckon kinetic relations of linear type, as proposed originally by Abeyaratne
and Knowles (1990) for irreversible processes close to thermodynamic equilibrium. These have the form

F ¼
s

M
, (58)

where M40 is a mobility coefficient; or, in other words,

h ¼ �
s

M
, (59)

and

Dsg ¼ DsðFþ hÞ ¼ �
1

M
.

Clearly, when M !þ1 we recover the Maxwell rule.
We computed the parametrized curves l 7!D̄ð�;jÞ, l 2 Cr, with finite r40 and for different parameter

values of j, under both the Maxwell rule and linear kinetic rules with different values of M40. Since D̄ is
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continuous in j 2 ½0;p=2�, we chose j ¼ 0;p=8;p=4; 3p=8, and p=2 in order to illustrate the continuous
behaviour along the whole parameter set, as snapshots of a curve in motion. In each of the figures presented in
the following pages, the blue dots correspond to values of D̄ for l ¼ it with t40, whereas the red circles
represent values of D̄ for l ¼ it with to0; the green dots correspond to the values of D̄ for l 2 Cþr . Each figure
shows a detailed view of an interesting part of the imaginary axis (left), say it 2 i½�1; 1�, and of the whole
contour Cr (right). The x- and y-axes correspond to values of Re D̄ and Im D̄, respectively.
5.1. Maxwell kinetic rule: M ¼ þ1

Our first calculation considered Maxwellian kinetics. Figs. 5 show the computed curves l 7!D̄0ð�;jÞ, l 2 Cr,
with r ¼ 1:5, corresponding to vanishing driving traction. We set the parameter values as (a) j ¼ 0,
(b) j ¼ p=8, (c) j ¼ p=4, (d) j ¼ 3p=8, and (e) j ¼ p=2. For instance, in Fig. 5(a) for j ¼ 0, we notice the
presence of two zeroes of D̄0 of form l ¼ 	it0 for some t040, as the curve passes through zero twice, once for
l ¼ þit0 (blue dot), and once for its symmetric l ¼ �it0 (red circle). By continuity of the Lopatinski function
in j, this behaviour persists for j40 small. Again, since the curves are like snapshots of a curve in motion
parametrized by j, we notice, in Fig. 5(b) for j ¼ p=8, that the curve touches the real axis at positive values of
D̄0, but no zeroes along the imaginary axis occur. This suggests, by continuity, that for a critical value jc with
0ojcop=8, the curves pass from having twozeroes of form ðl; xÞ ¼ ð	itj; eijÞ for all 0pjojc, a situation
which corresponds to a ‘‘cone’’ of double zeroes (cone in the ~x ¼ eij variable) along the imaginary axis, to
having none for jcojop=2, as can be observed from Figs. 5(c) and (d).

Observe in Fig. 5(e), however, the presence of two isolated zeroes at l ¼ 	it� for j ¼ p=2 and some t�40.
They are isolated because if we perform the calculations for values of j approaching p=2 from below, the
behaviour illustrated by Fig. 5(d), for which there are no zeroes of form ðl; xÞ ¼ ð	it; eijÞ, persists along the
parameter values 3p=8ojop=2 by continuity. In the limit j ¼ p=2, the two zeroes occur as can be observed
in Fig. 5(e). If we allow the parameter value j to move beyond j4p=2, then the previous behaviour for
jop=2 occurs by symmetry, and the zeroes must be isolated. Finally, notice that by a winding number
argument, there are no zeroes inside the contour (with Re l40) for all values of j under consideration. The
only zeroes found along the imaginary axis are of form ð	itj; eijÞ for all 0pjojcop=8, and the isolated
zeroes ð	it�; eip=2Þ, suggesting the existence of surface waves. These observations imply weak stability of the
twin for Maxwellian kinetics.
5.2. Linear kinetic rules with 0oMoþ1

If we substitute the Maxwell rule by linear kinetic functions as described above, and take bounded, positive
values of the mobility coefficient M, we observe a stabilizing effect. We computed the curves l 7!D̄ð�;jÞ, for
l 2 Cr with r ¼ 1:5, substituting Dsh ¼ �1=M in formula (51) for different values of M. Figs. 6, 7, and 8 show
the computed curves for values of M ¼ 100, M ¼ 10, and M ¼ 1, respectively, and for parameter values of
(a) j ¼ 0, (b) j ¼ p=8, (c) j ¼ p=4, (d) j ¼ 3p=8, and (e) j ¼ p=2. In contrast to what happens for
Maxwellian kinetics, we observe now that the main geometrical property of the curves is precisely that zero
remains outside the contour, showing the evanescence of the winding number of the curves with respect to
zero, for all parameter values of j. Notice that for l along the imaginary axis, l ¼ it, with small values of t,
the curves show an ‘‘opening’’ which avoids the real axis, and the values of D̄ along this segment have a non-
zero imaginary part (except at l ¼ 0), as suggested intuitively by formula (51). This behaviour can be observed
in all Figs. 6(a)–(e) on the left, depicting the curves for l along a segment of the imaginary axis. When we
decrease the mobility coefficient, this ‘‘opening’’ of the curves avoiding the real axis is even more accentuated
and visible, as we can observe from Figs. 7(a)–(e) and 8(a)–(e). Notice that the winding number of each of
these closed curves with respect to zero is zero, showing the non-evanescence of the stability function inside
and along the whole contour. These observations and the arguments given above indicate that the twin is
uniformly stable with respect to linear kinetic rules of Abeyaratne and Knowles type.
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and (e) j ¼ p=2.
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5.3. Numerical extrapolation of the limit M ! 0þ

We may ask about the behaviour of the curves when the mobility M goes to zero in Eq. (58). Although
taking the limit to zero mobility in linear rules like Eq. (58) may seem artificial (it means that not even an
infinite force is able to make the boundary move), the result corresponds to an effective relation for a ‘‘pinned’’
boundary, in which small imperfections of the material lead to a macroscopic kinetic relation characterized by
zero mobility at least along a portion near the origin in the F-axis (see, e.g., Abeyaratne et al., 1996;
Bhattacharya, 1999). By performing the numerical computation of D̄ for small values of M, one observes that
the curves have a limiting behaviour, and that they do not change much its form (modulo some scaling) when
M ! 0þ. To illustrate this, Figs. 9 depict the computed curves l 7!Dð�;jÞ, for l 2 Cr with r ¼ 1, when the
mobility coefficient is set to M ¼ 1� 10�4. As before, the figures correspond to values of (a) j ¼ 0, (b)
j ¼ p=8, (c) j ¼ p=4, (d) j ¼ 3p=8, and (e) j ¼ p=2, showing the curves for l along a portion of the
imaginary axis on the left, and along the whole contour, on the right. Of course, the diameter of the closed
contours blow up in size proportionally to 1=M. The images on the right seem to show that the curves pass
through zero due to the scales; but detailed pictures near zero on the left prove that this is not the case. We
observe, then, the same stable behaviour as for mobilities bounded below, in which the winding numbers of
the curves with respect to zero vanish, as expected. Similar (almost identical up to scaling) pictures of the
curves can be numerically obtained for values M ¼ 1� 10�5 and 1� 10�6.

6. Discussion
1.
 In this work, we presented a direct procedure to compute numerically the stability function associated to a
well known example of a martensite twin. Thanks to analiticity/continuity properties of the stability
function and by a winding number argument, our computations show that the twin is weakly stable under
the Maxwell kinetic rule (conservation of energy across the interface), whereas it is uniformly stable under
dissipative kinetic rules of linear type proposed by Abeyaratne and Knowles (1990). Our numerical results
seem to be the elastic counterpart to the analytic results of Benzoni-Gavage (1998, 1999) in the case of
two-phase fluid flow. This study pertains to the stability of a specific elastic martensite twin towards fully
three-dimensional perturbations, and it is the first of its kind, up to our knowledge.
2.
 We have numerically located certain zeroes of the stability function along the imaginary axis in the case
when the interface and its perturbations are subject to the Maxwell kinetic rule. Just like in the case of
phase boundaries for van der Waals fluids governed by Maxwelliam kinetics (Benzoni-Gavage, 1998), this
fact refers to the possible existence of surface waves. The latter are non-trivial solutions of form (19) with
ðl; ~xÞ ¼ ðit; ~xÞ, points where D̄ vanishes, and with ðF̂	; v̂	Þðþ1Þ ¼ 0. The amplitudes ðF̂	; v̂	Þð�Þ are
exponentially decreasing at þ1 and the waves are then localized near the interface (hence the name
surface waves). The existence and precise description of such waves are topics that still have to be
investigated.
3.
 Our analysis and computational methodology may serve as a blueprint to study other energy densities
under different regular kinetic models of particular interest. Positive stability results in these other
contexts may be taken as a criterion for the modelling of phase-boundary dynamics in real materials, in
the sense that a regular kinetic relation which does not pass a simple multidimensional stability test can
hardly be accepted to describe stably moving planar interfaces.
4.
 In this work, we selected kinetic relations in their simplest form, describing irreversible processes close to
equilibrium (Abeyaratne and Knowles, 1990, 1991). They express the driving force across the interface as
a function of the boundary speed. More complex theories prescribe kinetic relations depending, in
addition, on interfacial stress and energy (Gurtin and Struthers, 1990), or on interfacial orientation
(Rosakis and Tsai, 1995). It is not yet clear what are the effects of such kinetics on multidimensional
stability.
5.
 Notice that the kinetic rules of linear type (58) express the driving force as a monotonic function of the
phase-boundary speed. The class of kinetic rules defined by Eqs. 18(a)–(d) is, however, more general. For
instance, non-monotonic kinetic relations have been proposed before in the literature (see, e.g., Rosakis
and Knowles, 1997). Concerning predictions for regular non-monotonic kinetic relations in the particular
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Fig. 9. Numerical extrapolation of the limit M ! 0þ: Images of the curves l7!D̄ð�;jÞ with M ¼ 1� 10�4, for values of l along a portion
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case of static martensite twins, we conjecture that our observations on stability (weak stability under
Eqs. 18(a)–(c) versus uniform stability under Eqs. 18(a)–(d)) remain valid, as long as the kinetic rule is
monotonic in a neighborhood of s ¼ 0, as suggested by Eq. 18(d) and formula (51). The consequences of
non-monotonicity of regular kinetic rules on multidimensional stability of more general moving

boundaries are not yet fully understood.

6.
 We emphasize that the definition and solution theory of the stability function applies only to regular

kinetic rules which are, at least, once differentiable on its parameters. Our results and methodology do not
take into account discontinuous kinetic functions, or with discontinuous derivatives, which abound in the
literature as phenomenological models like lattice trapping or maximally dissipative processes (see, e.g.,
Abeyaratne and Knowles, 2006), to mention just a few. The multidimensional stability of phase
boundaries under non-regular kinetic relations is an important topic of further investigation.
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Appendix A. One-dimensional stability: Dðk; 0Þa0

In this appendix we include the computation of Dðl; 0Þ which can be seen as a one-dimensional stability
analysis. This is a straightforward calculation as the spectral analysis of M	 reduces to that of B1	

1 . Make
~x ¼ 0 with ðl; 0Þ 2S. The unstable eigenvalues of Mþðl; 0Þ are

mj ¼ þ
ilffiffiffiffi
kj

p ; j ¼ 1; 2; 3,

where kj are the real, positive, and distinct eigenvalues (28) of B1	
1 . A simple computation shows that the

corresponding eigenvectors are

w2 ¼ ê3; wj ¼ kj

2�3

kj � 2�2

0

0
B@

1
CA; j ¼ 1; 3.

Following formula (43), the unstable bundle of Mþðl; 0Þ takes the (full rank) form

R̂u
þðl; 0Þ ¼

w1 w2 w3

im1k1w1 im2k2w2 im3k3w3

 !
,

so that, in the notation of Section 4.4,

y1 ¼ 2�3ðk1; 0; k3Þ,

y2 ¼ ðk1ðk1 � 2�2Þ; 0; k3ðk3 � 2�2ÞÞ,

y3 ¼ ð0; 1; 0Þ,

z1 ¼ �2l�3ðk1

ffiffiffiffiffi
k1

p
; 0; k3

ffiffiffiffiffi
k3

p
Þ,

z2 ¼ �lðk1

ffiffiffiffiffi
k1

p
ðk1 � 2�2Þ; 0; k3

ffiffiffiffiffi
k3

p
ðk3 � 2�2ÞÞ,

z3 ¼ �l�ð0; 1; 0Þ.
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We compute the determinants (55),

Gð0Þðl; 0Þ ¼ 2l2�6
ffiffiffiffiffi
k1

p ffiffiffiffiffi
k3

p
ð
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k3

p
Þðð1þ 2�2Þ

ffiffiffiffiffi
k1

p ffiffiffiffiffi
k3

p
þ 2�2Þa0,

Gð1Þðl; 0Þ ¼ 4l2�7
ffiffiffiffiffi
k1

p ffiffiffiffiffi
k3

p
ðk1 � k3Þa0,

Gð2Þðl; 0Þ ¼ 2l�3k1k3ð
ffiffiffiffiffi
k3

p
�

ffiffiffiffiffi
k1

p
Þð2�2 þ

ffiffiffiffiffi
k1

p ffiffiffiffiffi
k3

p
Þa0,

which are all non-vanishing for ðl; 0Þ 2S, as the eigenvalues satisfy 0ok1ok2ok3. Thus, we obtain for the
Maxwell rule that

D0 ¼ 16�2Gð0ÞGð1Þ�Cl4a0.

For regular Abeyaratne–Knowles rules (with ðDshÞo0) we get

D ¼ 8Gð0Þð2�2Gð1Þ þ lðDshÞGð2ÞÞ

¼ 16Gð0Þl
2�3ð

ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k3

p
Þð4�6

ffiffiffiffiffi
k1

p ffiffiffiffiffi
k3

p
ð
ffiffiffiffiffi
k1

p
þ

ffiffiffiffiffi
k3

p
Þ � ðDshÞk1k3ð2�

2 þ
ffiffiffiffiffi
k1

p ffiffiffiffiffi
k3

p
ÞÞ

�Cl4a0.

Hence,

Dðl; 0Þa0; Re lX0; jlj ¼ 1,

for both Maxwell and regular Abeyaratne–Knowles kinetic rules.
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