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Viscous balance laws



Viscous balance laws

General family of viscous balance laws:

ut + f (u)x = uxx +g(u), (VBL)

where u = u(x , t) ∈ R and x ∈ R, t > 0.

• f = f (u) - nonlinear flux function,

• g = g(u) - balance or production term
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Interpretation

• Viscous balance laws appear as regularizations of scalar conservation

laws:

ut + f (u)x = 0.

• Balance laws introduce a production term

ut + f (u)x = g(u).

• Viscosity or diffusion appears naturally as a regularization

(parabolic) term, e.g., Burgers’ equation

ut +
(

1
2u

2)x = uxx .
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• Viscous balance laws describe the evolution of a density u of point

particles which:

• diffuse

• get advected with speed f ′(u)

• react a a per cápita production rate g(u)/u

• Applications to:

• roll waves

• nozzle flow

• combustion theory

• Scalar viscous balance laws are simplified models that combine these

effects into one single equation.
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Hypotheses (i)

Assumptions:

f ∈ C 4(R). (H1)

g ∈ C 3(R) is of logistic or Fisher-KPP type:

g(0) = g(1) = 0,

g ′(0) > 0, g ′(1) < 0,

g(u) > 0, ∀u ∈ (0,1),

g(u) < 0, ∀u ∈ (−∞,0).

(H2)
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Hypotheses (ii)

There exists u∗ ∈ (−∞,0) such that∫ 0

u∗
g(s)ds +

∫ 1

0
g(s)ds = 0.

(H3)

a0 := f ′′′(0)− f ′′(0)g ′′(0)√
g ′(0)

6= 0, (genericity condition) (H4)
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Hypotheses (iii)

Under (H2) and (H3), u∗ ∈ (−∞,0) is the unique value such that (H3)

holds and ∫ 1

u
g(s)ds > 0, ∀ u ∈ (u∗,1).

Therefore we can define

γ(u) :=

√
2
∫ 1

u
g(s)ds, u ∈ (u∗,1),

as well as

I0 :=
∫ 1

u∗
γ(s)ds > 0, I1 :=

∫ 1

u∗
f ′(s)γ(s)ds,

J := 2
∫ 1

u∗
f ′(s)

√
1 + γ ′(s)2 ds, L := 2

∫ 1

u∗

√
1 + γ ′(s)2 ds.
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Hypotheses (iv)

I0J 6= LI1, (non-degeneracy condition) (H5)

f ′(1) 6= I1
I0
, (saddle condition) (H6)
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Example

Burgers-Fisher equation:

ut +uux = uxx +u(1−u), x ∈ R, t > 0,

Burgers’ flux:

f (u) =
1

2
u2,

Logistic or Fisher-KPP reaction:

g(u) = u(1−u).
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Figure: Logistic reaction function g(u) = u(1−u).
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Periodic traveling waves

A spatially periodic traveling wave is a solution of the form

u(x , t) = ϕ(x− ct),

where c ∈ R - wave speed, and ϕ ∈ C 1(R) - profile function.

The wave is periodic with fundamental period T > 0 if

ϕ(z +T ) = ϕ(z), ∀z ∈ R, z := x− ct,

The wave is bounded if

|ϕ(z)|, |ϕ ′(z)| ≤ C , ∀z ∈ R, some C > 0.
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Main results

Theorem (existence of small amplitude periodic waves)

Under (H1) thru (H4), there exist a critical speed c0 := f ′(0), and ε0 > 0

such that, for each 0 < ε < ε0 there exists a unique (up to translations)

periodic traveling wave to (VBL) of the form u(x , t) = ϕε (x− c(ε)t),

traveling with speed c(ε) = c0 + ε if a0 > 0, or c(ε) = c0− ε if a0 < 0,

with fundamental period,

Tε =
2π√
g ′(0)

+O(ε), as ε → 0+.

The profile ϕε = ϕε (·) is of class C 3(R), satisfies ϕε (z +Tε ) = ϕε (z) for

all z ∈ R and is of small amplitude,

|ϕε (z)|, |(ϕ
ε )′(z)| ≤ C

√
ε,

for all z ∈ R and some uniform C > 0.
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Theorem (existence of large period waves)

Under (H1) - (H3), (H5) and (H6), there is a critical speed c1 := I1/I0
such that the equation (VBL) has a traveling pulse solution (homoclinic

orbit), u(x , t) = ϕ0(x− c1t), with speed c1, ϕ0 ∈ C 3(R) and

|ϕ0(z)−1|, |(ϕ
0)′(z)| ≤ Ce−κ|z |,

for all z ∈ R, some κ > 0. Moreover, there exists ε1 > 0 such that, for

each 0 < ε < ε1 there exists a unique periodic traveling wave solution to

(VBL) of the form u(x , t) = ϕε (x− c(ε)t), with speed c(ε) = c1 + ε if

f ′(1) < c1 or c(ε) = c1− ε if f ′(1) > c1, with large fundamental period

and bounded amplitude,

Tε = O(| log ε|)→ ∞, |ϕε (z)|, |(ϕ
ε )′(z)|= O(1),

as ε → 0+.

14



Theorem (existence of large period waves (continuation))

Moreover, the periodic orbits converge to the homoclinic (or traveling

pulse) as ε → 0+ and satisfy (after a suitable reparametrization of z),

sup
z∈[−Tε

2 ,Tε
2 ]

(
|ϕ0(z)−ϕ

ε (z)|+ |(ϕ
0)′(z)− (ϕ

ε )′(z)|
)
≤ C exp

(
−κ

Tε

2

)
,

|c1− c(ε)|= ε ≤ C exp
(
−κTε

)
,

for some uniform C > 0, same κ > 0 and for all 0 < ε < ε1.
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Theorem (spectral instability of small-amplitude waves)

Under conditions (H1) thru (H4), there exists 0 < ε̄0 < ε0 such that every

small-amplitude periodic wave ϕε with 0 < ε < ε̄0 is spectrally unstable:

the Floquet spectrum of the linearized operator around the wave

intersects the unstable half plane C+ = {λ ∈ C : Re λ > 0}.

Theorem (spectral instability of large period waves)

Under assumptions (H1) - (H3), (H5) and (H6), there exists 0 < ε̄1 < ε1

such that every large period wave ϕε with 0 < ε < ε̄1 is spectrally

unstable: the Floquet spectrum of the linearized operator around the

wave intersects the unstable half plane C+ = {λ ∈ C : Re λ > 0}.
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Existence of small amplitude

periodic waves



Associated ODE system

Substitute u(x , t) = ϕ(x− ct) into (VBL):

−cϕ
′+ f ′(ϕ)ϕ

′ = ϕ
′′+g(ϕ), ′ = d/dz .

Denote U := ϕ(z), V := ϕ ′(z) to obtain the first order ODE planar

system:
U ′ = F (U,V ,c) := V ,

V ′ = G (U,V ,c) :=−cV + f ′(U)V −g(U).
(ODE)

(H1) and (H2) imply: F ,G ∈ C 3(R3) and there exist two equilibrium

points:

P0 = (0,0), P1 = (1,0).
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Linearization at equilibria (i)

Jacobian with respect to (U,V ) of the right hand side of (ODE):

A(U,V ) :=

(
FU FV
GU GV

)
=

(
0 1

f ′′(U)V −g ′(U) −c + f ′(U)

)
.

A0 = A(0,0) and A1 = A(1,0) are the linearizations of (ODE) evaluated

at P0 and P1:

A0 =

(
0 1

−g ′(0) −c + f ′(0)

)
, A1 =

(
0 1

−g ′(1) −c + f ′(1)

)
.
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Linearization at equilibria (ii)

• Eigenvalues of A1:

λ
±
1 (c) =

1

2

(
f ′(1)− c

)
± 1

2

√
(f ′(1)− c)2−4g ′(1),

From (H2), g ′(1) < 0 and P1 = (1,0) is a hyperbolic saddle for each value

of c ∈ R.

• Eigenvalues of A0:

λ
±
0 (c) =

1

2

(
f ′(0)− c

)
± 1

2

(
(f ′(0)− c)2−4g ′(0)

)1/2
.

Hence P0 = (0,0) is a node, a focus or a center, depending on c ∈ R.

c ∈ R is the bifurcation parameter.
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Andronov-Hopf bifurcation (i)

Planar system of the form:

U ′ = F (U,V ,µ)

V ′ = G (U,V ,µ)

F ,G of class C 3, µ ∈ R - bifurcation parameter. Assume P0 = (U0,V0) is

an equilibrium point; eigenvalues of the linearization at P0:

λ±(µ) = α(µ)± iβ (µ). Assume that for µ = µ0 the following conditions

hold:

(a) non-hyperbolicity condition: α(µ0) = 0, β (µ0) = ω0 6= 0, and

sgn(ω0) = sgn((∂G/∂U)(U0,V0,µ0)).

(b) transversality condition:

dα

dµ
(µ0) = d0 6= 0.

20



Andronov-Hopf bifurcation (ii)

(c) genericity condition: a0 6= 0, where a0 is the first Lyapunov exponent,

a0 :=
1

16

(
FUUU +FUVV +GUUV +GVVV

)
+

+
1

16ω0

(
FUV (FUU +FVV )−GUV (GUU +GVV )−FUUGUU +FVVGVV

)
,

(derivatives of F and G are evaluated at (U0,V0,µ0)).

Then there exists ε > 0 such that a unique family of closed periodic orbit

solutions bifurcates from the equilibrium point into the region:{
(µ0,µ0 + ε), if a0d0 < 0,

(µ0− ε,µ0), if a0d0 > 0.
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Andronov-Hopf bifurcation (iii)

Their amplitude and fundamental period behave like

|ϕ|, |ϕz |= O(
√
|µ−µ0|), T (µ) =

2π

|ω0|
+O(|µ−µ0|), as µ → µ0.

Stability as solutions to the ODE. Orbits are:

stable (supercritical Hopf bifurcation) if a0 < 0

unstable (subcritical Hopf bifurcation) if a0 > 0.
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Existence of small-amplitude periodic waves (i)

Proof of Theorem.

Write eigenvalues of A0 as λ
±
0 = α(c)∓ iβ (c), where

α(c) :=
1

2
(f ′(0)−c), β (c) :=−1

2

√
4g ′(0)− (f ′(0)− c)2, c ≈ f ′(0).

Thus, α(c0) = 0 for the only bifurcation value of the speed: c0 := f ′(0).

At c = c0 the origin is a center with eigenvalues

λ
+
0 (c0) =−i

√
g ′(0), λ

−
0 (c0) = i

√
g ′(0).

Notice that ω0 := β (c0) =−
√
g ′(0) 6= 0. Since GU = f ′′(U)V −g ′(U),

(GU)|(0,0,c0) =−g ′(0) < 0,

yielding sgn(ω0) = sgn((GU)|(0,0,c0)) =−1, that is, the non-hyperbolicity

condition (a).

The transversality condition (b) also holds:

dα

dc
(c0) =−1

2
=: d0 < 0.
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Existence of small-amplitude periodic waves (ii)

The Lyapunov exponent reduces to

a0 =
1

16

(
GUUV +GVVV

)
|(0,0,c0)−

1

16ω0

(
GUV (GUU +GVV )

)
|(0,0,c0).

Upon calculations,

GUV |(0,0,c0) = f ′′(0), GUU |(0,0,c0) =−g ′′(0), GVV |(0,0,c0) = 0,

GUUV |(0,0,c0) = f ′′′(0), GVVV |(0,0,c0) = 0,

we arrive at

a0 =
1

16

(
f ′′′(0)− f ′′(0)g ′′(0)√

g ′(0)

)
=

a0

16
6= 0,

in view of (H4). This verifies the genericity condition (c). Since d0 < 0

and sgn(a0) = sgn(a0) we obtain the result.
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Examples

(I) Burgers-Fisher equation

The Burgers-Fisher equation:

ut +uux = uxx +u(1−u), x ∈ R, t > 0,

Burgers’ flux:

f (u) =
1

2
u2,

Logistic or Fisher-KPP reaction:

g(u) = u(1−u).

f and g satisfy (H1) and (H2). Here u∗ =−1/2 is such that∫ 1

u∗
g(s)ds =

∫ 1

− 1
2

s(1− s)ds = 0.

Thus, (H3) is also satisfied.
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Since g ′(u) = 1−2u, g ′′(u) =−2, f ′(u) = u, f ′′(u) = 1,

a0 =− f ′′(0)g ′′(0)√
g ′(0)

= 2 > 0,

Thus, the genericity condition (H4) holds.

Bifurcation speed: c0 = f ′(0) = 0. Since a0 > 0 then for each speed value

c ∈ (0,ε0) with 0 < ε0� 1 there is a small amplitude periodic wave. This

corresponds to a subcritical Hopf bifurcation. Their fundamental period

is T = 2π +O(c), for c ≈ 0+.
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Figure: Phase portrait for the speed value c =−0.05 < 0. The origin is a

repulsive node and all nearby solutions move away from it.
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Figure: Phase portrait when c = c0 = 0; a subcritical Hopf bifurcation occurs.

The origin is a center and solutions move away if they start far enough from

the origin and locally rotate around a linearized center otherwise.
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Figure: Phase portrait for c = 0.005. The orbit in red is a numerical

approximation of the unique small amplitude periodic wave for this speed value,

the origin is an attractive node and nearby solutions inside the periodic orbit

approach zero, whereas solutions outside the periodic orbit move away since

the orbit is unstable.
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Figure: Graph (in red) of the periodic profile ϕ for c = 0.005 as a function of

z = x− ct
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Examples

(II) Logistic Buckley-Leverett model

Consider the following viscous balance law

ut + ∂x

(
u2

u2 + 1
2 (1−u)2

)
= uxx +u(1−u), x ∈ R, t > 0,

underlies the nonlinear Buckley-Leverett flux function,

f (u) =
u2

u2 + 1
2 (1−u)2

.

It captures the main features of two phase fluid flow in a porous medium.

Again, logistic reaction: g(u) = u(1−u).

f and g satisfy (H1), (H2) and (H3). After computing the derivatives,

a0 = f ′′′(0)− f ′′(0)g ′′(0)√
g ′(0)

= 32,

and the genericity condition (H4) holds.
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Bifurcation speed: c0 = f ′(0) = 0. Since a0 > 0 then for each speed value

c ∈ (0,ε0) with 0 < ε0� 1 there is a small amplitude periodic wave. This

corresponds to a subcritical Hopf bifurcation. Their fundamental period

is T = 2π +O(c), for c ≈ 0+.
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Figure: Phase portrait for the speed value c =−0.05 < 0. The origin is a

repulsive node and all nearby solutions move away from it.
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Figure: Phase portrait when c = c0 = 0; a subcritical Hopf bifurcation occurs.

The origin is a center and solutions move away if they start far enough from

the origin and locally rotate around a linearized center otherwise.
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Figure: Phase portrait for c = 0.0025. The orbit in red is a numerical

approximation of the unique small amplitude periodic wave for this speed value,

the origin is an attractive node and nearby solutions inside the periodic orbit

approach zero, whereas solutions outside the periodic orbit move away since

the orbit is unstable.
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Figure: Graph (in red) of the periodic profile ϕ for c = 0.0025 as a function of

z = x− ct
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Examples

(III) Modified generalized Burgers-Fisher equation

Here

f (u) =
1

4
u4− 1

3
u3,

g(u) = u−u4.

Clearly, assumptions (H1) - (H3) hold, where the unique value

u∗ ≈−0.72212 is approximated numerically. Upon calculation of the

derivatives,

a0 =−2 < 0.

Thus, (H4) holds.
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Bifurcation speed: c0 = f ′(0) = 0. Since a0 < 0 then the family occurs for

negative speed values c(ε) =−ε < 0 = c0 = f ′(0), sufficiently small. This

is a supercritical Hopf bifurcation and the small amplitude periodic orbits

are stable as solutions to the ODE, with speed value c(ε) =−ε ∈ (−ε0,0)

with 0 < ε0� 1. Their fundamental period is T = 2π +O(c), for c ≈ 0+.
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Figure: Phase portrait for the speed value c = 0.05 > c0 = 0. The origin is an

attractive node and all nearby solutions converge to it.
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Figure: Phase portrait when c = c0 = 0; a supercritical Hopf bifurcation occurs.

The origin is a center and solutions move away if they start sufficiently far from

the origin and rotate locally around a linearized center otherwise.
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Figure: Phase portrait for c =−0.005. The orbit in red is a numerical

approximation of the unique small amplitude periodic wave for this speed value,

the origin is a repulsive node and nearby solutions both inside and outside the

periodic orbit approach the periodic wave because it is stable as a solution to

the ODE.
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Figure: Graph (in red) of the periodic profile ϕ for c =−0.005 as a function of

z = x− ct
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Existence of large period waves



Augmented system

First we establish the existence of an homoclinic loop. We apply

Melnikov’s method. Consider the augmented system:

U ′ = V ,

V ′ =−cV +af ′(U)V −g(U),
(A)

where a ∈ R is a new auxiliary parameter. Write it in near-Hamiltonian

form:
U ′ = ∂VH + εR(U,V ,µ),

V ′ =−∂UH + εQ(U,V ,µ),
(PS)

43



where:

µ = (µ1,µ2) ∈ R2, a =: εµ1, c =: εµ2,

H(U,V ) :=
1

2
V 2 +

∫ U

0
g(s)ds,

is the Hamiltonian, and

R(U,V ,µ)≡ 0,

Q(U,V ,µ) := µ1f
′(U)V −µ2V ,

are autonomous perturbations. Here 0 < ε � 1 is small.
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Hamiltionan system

The associated Hamiltonian (unperturbed) system is

U ′ = ∂VH = V ,

V ′ =−∂UH =−g(U).
(HS)

Observations:

• P0 = (0,0) and P1 = (1,0) are equilibrium points for both the

Hamiltonian system (HS) and the perturbed system (PS).

• It is easy to check that: P0 is a center and P1 is a hyperbolic saddle

for the Hamiltonian system (HS).
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• Important: P1 = (1,0) is also a hyperbolic saddle for the perturbed

system (PS) for any parameter values a and c (equivalently, for any

ε, µ1 and µ2). Indeed, the linearization of (PS) around P1 = (1,0) is

Ãε (1,0) =

(
0 −g ′(1)

1 af ′(1)− c

)
,

having eigenvalues

λ
ε
± =

1

2

(
af ′(1)− c±

√
(af ′(1)− c)2−4g ′(1)

)
,

and in view of (H2), we have λ ε
− < 0 < λ ε

+ for all values of a and c ,

yielding a hyperbolic saddle.

• P0 = (0,0) is a center for the perturbed system only if c = af ′(0)

(which happens when ε = 0).
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Energy levels for the Hamiltonian system (i)

• The energy levels at P0 = (0,0) and P1 = (1,0) as equilibria of the

Hamiltonian system (HS) are

β := H(1,0) =
∫ 1

0
g(s)ds > 0,

and H(0,0) = 0.

• The set

Γβ := {(U,V ) ∈ R2 : H(U,V ) = β},

is a homoclinic loop for the Hamiltonian system joining P1 = (1,0)

with itself. It is given explicitly by

V (U) =±V β
(U) :=±

√
2
(

β −
∫ U

0
g(s)ds

)
=±γ(U), U ∈ (u∗,1).
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Energy levels for the Hamiltonian system (ii)

• There exists a family of periodic orbits for the Hamiltonian system

(HS),

Γh := {(U,V ) ∈ R2 : H(U,V ) = h}, h ∈ (0,β ),

such that

(i) Γh→ P0 = (0,0) as h→ 0+, and

(ii) Γh→ Γβ as h→ β−.

If G̃ (u) =
∫ u

0 g(s)ds then under (H2) and (H3) it is easy to check

that for each h ∈ (0,β ) there exist unique values u1(h) ∈ (u∗,0) and

u2(h) ∈ (0,1) such that G̃ (u1(h)) = G̃ (u2(h)) = h and the periodic

orbits are given by

V (U) =±V h
(U) :=±

√
2
(
h−

∫ U

0
g(s)ds

)
,

for U ∈ (u1(h),u2(h)), h ∈ (0,β ).
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Figure: Homoclinic loop Γβ in the (U,V )-plane and periodic orbits Γh,

h ∈ (0,β ), for the Hamiltonian system. Here g(u) = u(1−u) (logistic).
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Energy levels for the Hamiltonian system (iii)

• If T = T (h) is the fundamental period of the periodic orbit Γh,

h ∈ (0,β ), then T (h)→ ∞ as h→ β−. The period can be computed

explicitly:

T (h) =
√

2
∫ u2(h)

u1(h)

dy√
h−

∫ y
0 g(s)ds

, h ∈ (0,β ).

From standard properties of Hamiltonian systems, 0 < T (h) < ∞ for

each h ∈ (0,β ) and T (h)→ ∞ as h→ β−, which is the infinite

period of the homoclinic loop Γβ .
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Melnikov integrals for the perturbed system

Define the associated Melnikov integrals for the perturbed system (cf.

Han and Yu (2012), Chicone (2006)):

M̃(h,µ) :=
∫

int(Γh)
(∂UR + ∂VQ) dU dV .

They satisfy (see Han and Yu (2012)):

• M̃ ∈ C∞ for |ε|+ |h−h0| � 1 small for any h0 ∈ (0,β ), all µ ∈ R2.

• The derivative of M̃ with respect to h is determined by:

∂hM̃(h,µ) =
∮

Γh
(∂UR + ∂VQ) dσh, h ∈ (0,β ), µ ∈ R2,

where dσh denotes the arc length measure on Γh.

The Melnikov integrals precisely at h = β are

M(µ) := M̃(β ,µ) =
∫

int(Γβ )
(∂UR + ∂VQ) dU dV ,

M1(µ) := ∂hM̃(β ,µ) =
∮

Γβ

(∂UR + ∂VQ) dσβ .
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Melnikov’s theorem

Theorem (Melnikov’s method for perturbed homoclinic orbits)

Suppose that P1 is a hyperbolic saddle for the unperturbed Hamiltonian

system, with a homoclinic loop Γβ . If ε > 0 is small then the perturbed

system (PS) has a unique hyperbolic saddle P1(ε) = P1 +O(ε).

Moreover, if M(µ0) = 0 and M1(µ0) 6= 0 then, for each ε > 0 sufficiently

small, the perturbed system with µ = µ0 has a unique hyperbolic

homoclinic loop Γ
β

ε relative to the stable and unstable manifolds of the

hyperbolic saddle P1(ε). If M(µ) has no zeroes and |ε| 6= 0 is small, then

the stable and unstable manifolds of P1(ε) do not intersect.

– Classical theorem by Melnikov (1963). See also Wiggins (2003),

Chicone (2006).
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Existence of a homoclinic loop

Proposition

Under (H1) - (H3) and (H5), system (A) has a unique homoclinic orbit

joining the hyperbolic saddle point P1 = (1,0) with itself for the

parameter values a = 1 and c = c1 = I1/I0.

Proof. Follows upon application of Melnikov’s method. Since

R(U,V ,µ) = 0 and Q(U,V ,µ) = µ1f
′(U)V −µ2V , we evaluate the

Melnikov integrals:

M(µ) =
∫

int(Γβ )
(µ1f

′(U)−µ2)dV dU =
∫ 1

u∗

∫
γ(U)

−γ(U)
(µ1f

′(U)−µ2)dV dU

= 2
(

µ1

∫ 1

u∗
f ′(U)γ(U)dU−µ2

∫ 1

u∗
γ(U)dU

)
= 2
(
µ1I1−µ2I0

)
.

Hence, M(µ) = 0 only when

µ2 =
( I1
I0

)
µ1. (*)
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Evaluate M1 at any µ ∈ R2 satisfying (*):

M1(µ) =
∮

Γβ

(µ1f
′(U)−µ2)dσβ = µ1

∮
Γβ

f ′(U)dσβ −µ2

∮
Γβ

dσβ

= 2µ1

∫ 1

u∗
f ′(U)

√
1 + γ ′(U)2 dU−µ2|∂ Ωβ |

= µ1J−µ2L

= µ1

(
J−

( I1
I0

)
L

)
6= 0

if µ1 6= 0 and in view of (H5). This implies that there is a whole line of

simple zeroes of the Melnikov function determined by

C :=
{

(µ1,µ2) ∈ R2 : µ2 =
( I1
I0

)
µ1

}
\{(0,0)}.
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Now, fix ε > 0 sufficiently small. By Melnikov’s theorem, the perturbed

system (PS) has a unique hyperbolic point P1(ε) = P1 +O(ε). But since

P1 = (1,0) is a hyperbolic saddle for system (PS) for any parameter

values, we obtain that P1(ε)≡ P1 = (1,0). Moreover, for any fixed

µ0 ∈ C , µ0 6= (0,0), the perturbed system (PS) with µ = µ0 has a unique

hyperbolic homoclinic loop, Γ
β

ε , relative to the stable and unstable

manifolds of the saddle P1. For this fixed value of ε > 0, let us define

µ1 :=
1

ε
> 0, µ2 =

( I1
I0

)
µ1,

so that c = εµ2 = I1/I0 and a = εµ1 = 1. Therefore,

µ0 := (µ1,µ2) = (1/ε,(I0/εI1)) ∈ C ⊂ R2 is a bifurcation value for which

the Melnikov integral has a simple zero. In this case the critical value for

the speed is c = c1 := I1/I0. Now, since M(µ0) = 0 and M1(µ0) 6= 0 we

conclude that the perturbed system has a unique homoclinic loop Γ
β

ε

relative to the stable and unstable manifolds at P1, for parameter values

a = 1 and c = c1.
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Traveling pulse

Corollary (existence of a traveling pulse)

The system (ODE) has a homoclinic loop for the speed value

c = c1 = I1/I0, which we denote as Γ0 := {(ψ,ψ ′)(z) : z ∈ R}, with

ψ ∈ C 3(R) and such that (ψ,ψ ′)(z)→ (1,0) as z →±∞. The

convergence is exponential: there exist constants C ,κ > 0 such that

|ψ(z)−1|, |ψ ′(z)| ≤ Ce−κ|z |, as |z | → ∞.

This homoclinic orbit is associated to a unique (up to translations)

traveling pulse solution to (VBL) of the form u(x , t) = ψ(x− c1t) and

traveling with speed c = c1.
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Andronov-Leontovich’s theorem

Theorem (Andronov-Leontovich)

Consider a planar system of the form

U ′ = F (U,V ,µ)

V ′ = G (U,V ,µ)

where F and G are smooth and µ ∈ R. Assume that (U0,V0) is a

hyperbolic saddle for all µ near µ0; that at µ = µ0 the eigenvalues are

λ1(µ0) < 0 < λ2(µ0); and that the system has a homoclinic orbit Γ0 at

the saddle. Let us define the saddle quantity as

Σ0 := λ1(µ0) + λ2(µ0),

and suppose that Σ0 6= 0.
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Theorem (Andronov-Leontovich (continuation))

Then:

(a) If Σ0 < 0 then for sufficiently small µ−µ0 > 0 there exists a unique

stable periodic orbit Γ(µ) bifurcating from Γ0 which as µ → µ
+
0 gets

closer to the homoclinic loop at µ = µ0. When µ < µ0 there are no

periodic orbits.

(b) If Σ0 > 0 then for sufficiently small µ−µ0 < 0 there exists a unique

unstable periodic orbit Γ(µ) bifurcating from Γ0 which as µ → µ
−
0

becomes the homoclinic loop at µ = µ0. When µ > µ0 there are no

periodic orbit.

– Classical theorem by Andronov and Leontovich (1937). See, e.g.,

Shilnokov et al. (2001).
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Periodic wavetrains with large fundamental period (i)

Proof of theorem.

Assume (H1) - (H3), (H5) and (H6). We know that when c = c1,

P1 = (1,0) is a hyperbolic saddle for system (ODE) and there is a

homoclinic orbit joining P1 with itself. The eigenvalues of the

linearization at P1,

λ1(c1) =
1

2
(f ′(1)− c1)− 1

2

√
(f ′(1)− c1)2−4g ′(1) < 0,

λ2(c1) =
1

2
(f ′(1)− c1) +

1

2

√
(f ′(1)− c1)2−4g ′(1) > 0,

satisfy λ1(c1) < 0 < λ2(c1). Hence the saddle quantity is non-zero,

Σ0 = f ′(1)− c1 6= 0, in view of (H6). Andronov-Leontovich’s theorem

implies there exists ε̃1 > 0 small such that, if f ′(1) > c1 (respectively,

f ′(1) < c1) then for each c ∈ (c1− ε̃1,c1) (respectively, c ∈ (c1,c1 + ε̃1))

there exists a unique closed periodic orbit for system (ODE) with

fundamental period T (c).
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Periodic wavetrains with large fundamental period (ii)

We obtain a family of periodic orbits parametrized by

ε := |c− c1| ∈ (0, ε̃1),

denoted as (U
ε
,V

ε
)(z) =: (ϕε ,(ϕε )′)(z), z ∈ R, with speed value

c(ε) = c1 + ε if f ′(1) < c1 or c(ε) = c1− ε if f ′(1) > c1, fundamental

period Tε , and amplitude |ϕε (z)|, |(ϕε )′(z)|= O(1) as ε → 0+.

Moreover, the family of orbits converge to the homoclinic loop relative to

the saddle point P1 = (1,0) as ε → 0+, which we denote as

(ϕ
0,(ϕ

0)′)(z) := (ψ,ψ ′)(z), z ∈ R,

with (ϕ0,(ϕ0)′)(z)→ (1,0) exponentially fast as z →±∞. Hence, there

exists δ̃ (ε) > 0 such that δ̃ (ε)→ 0 as ε → 0+ and

|ϕ0(z)−ϕ
ε (z)| ≤ δ̃ (ε), for all |z | ≤ Tε

2
.
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Periodic wavetrains with large fundamental period (iii)

It can be shown that the homoclinic loop (ϕ0,(ϕ0)′) = (ψ,ψ ′) is

non-degenerate (see definition by Beyn (1990)). Apply Corollary 3.2 in

Beyn (1990) to conclude that there exists 0 < ε1 < ε̃1 sufficiently small

and an appropriate reparametrization of the phase z such that

sup
z∈[−Tε

2 ,Tε
2 ]

(
|ϕ0(z)−ϕε (z)|+ |(ϕ0)′(z)− (ϕε )′(z)|

)
≤ C exp

(
−
(

min{λ2(c1), |λ1(c1)|}
)
Tε

2

)
,

ε ≤ C exp
(
−
(

min{λ2(c1), |λ1(c1)|}
)
Tε

)
,

for each 0 < ε < ε1. Set κ = min{λ2(c1), |λ1(c1)|}> 0. This shows the

desired bounds. Notice the second bound implies Tε = O(| log ε|)→ ∞.

Finally, the family of orbits ϕε is of class C 3 in z ∈ R and in the

bifurcation parameter c , by the regularity of f and g , and to standard

ODE results.

61



Examples

(I) Burgers-Fisher equation

When g(u) = u(1−u) the function γ = γ(u) is

γ(u) =
1√
3

√
1−3u2 + 2u3, u ∈ (− 1

2 ,1).

Hence, I0 and I1 can be computed:

I0 =
∫ 1

− 1
2

γ(s)ds =
1√
3

∫ 1

− 1
2

√
1−3s2 + 2s3 ds =

3

5
,

I1 =
∫ 1

− 1
2

f ′(s)γ(s)ds =
1√
3

∫ 1

− 1
2

s
√

1−3s2 + 2s3 ds =
3

35
.

L and J are approximated numerically,

L = 2
∫ 1

− 1
2

√
1−4s3 + 3s4

1−3s2 + 2s3
ds ≈ 4.0734,

J = 2
∫ 1

− 1
2

s

√
1−4s3 + 3s4

1−3s2 + 2s3
ds ≈ 0.6906.
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The non-degeneracy condition (H5) holds: I0J ≈ 0.4152 6= LI1 ≈ 0.3492.

The homoclinic loop speed is

c1 =
I1
I0

=
1

7
.

The saddle condition (H6) holds: f ′(1) = 1 6= c1.

Since f ′(1) = 1 > c1 = 1/7, then the family of periodic waves with large

period emerge for c ∈ ( 1
7 − ε1,

1
7 ) with ε1 > 0 small.
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Figure: Numerical approximation of the homoclinic loop for the Burgers-Fisher

equation with speed value c1 = 1/7 (in blue, dashed line) and the periodic wave

nearby with speed value c1− ε, ε ≈ 0.05 (solid, orange line).
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Examples

(II) Logistic Buckley-Leverett model

Same logistic function, so I0 = 3/5. We also have,

I1 =
∫ 1

−1/2
f ′(s)γ(s)ds =

∫ 1

−1/2

s(1− s)
√

1−3s2 + 2s3(
s2 + 1

2 (1− s)2
)2 ds = 0.353458.

L and J are approximated numerically,

L = 2
∫ 1

−1/2

√
1−4s3 + 3s4

1−3s2 + 2s3
ds ≈ 4.0734,

J = 2
∫ 1

−1/2

s(1− s)(
s2 + 1

2 (1− s)2
)2

√
1−4s3 + 3s4

1−3s2 + 2s3
ds ≈ 1.6272.
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The non-degeneracy condition (H5) holds: I0J ≈ 0.9763 6= LI1 ≈ 1.4398.

The homoclinic loop speed is

c1 =
I1
I0

= 0.589097.

The saddle condition (H6) holds: f ′(1) = 0 6= c1.

Since f ′(1) = 0 < c1, then the periodic waves emerge for

c ∈ (0.589097,0.589097 + ε1) with ε1 > 0 small.

66



-��� -��� ��� ��� ���

-���

-���

���

���

���

Figure: Numerical approximation of the homoclinic loop for the logistic

Buckley-Leverett equation with speed value c1 ≈ 0.5891 (in blue, dashed line)

and the periodic wave nearby with speed value c1 + ε, ε ≈ 0.025 (solid, orange

line).
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Examples

(III) Modified generalized Burgers-Fisher equation

When f (u) = 1
4u

4− 1
3u

3 and g(u) = u−u4 we have the approximations

I0 =
1√
5

∫ 1

u∗

√
3−5s2 + 2s5 ds ≈ 0.979027,

I1 =
1√
5

∫ 1

u∗
(s3− s2)

√
3−5s2 + 2u5 ds ≈−0.129571,

and,

L = 2
∫ 1

u∗

√
3−8s5 + 5s8

3−5s2 + 2s5
ds ≈ 5.02904,

J = 2
∫ 1

u∗
(s3− s2)

√
3−8s5 + 5s8

3−5s2 + 2s5
ds ≈−1.27529,
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The non-degeneracy condition (H5) holds:

I0J ≈−1.24854 6= LI1 ≈−0.65162.

The homoclinic loop speed is

c1 =
I1
I0
≈−0.13235,

The saddle condition (H6) holds: f ′(1) = 0 6= c1.

Since f ′(1) = 0 > c1 =−0.13235, then the periodic waves emerge for

c ∈ (−0.13235− ε1,−0.13235) with ε1 > 0 small.
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Figure: Numerical approximation of the homoclinic loop for the modified

Burgers-Fisher equation with speed value c1 ≈−0.13235 (in blue, dashed line)

and the periodic wave nearby with speed value c1− ε, ε ≈ 0.05 (solid, orange

line).
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Spectral instability



The spectral stability problem

Spectral stability refers to an important property of the traveling wave as

a solution to the PDE.

Consider a perturbation v of a bounded periodic traveling wave

ϕ = ϕ(z), z = x− ct, with speed c and fundamental period T > 0.

Substituting v + ϕ into the viscous balance law (VBL) written in the

variables (z , t) = (x− ct, t), then v = v(z , t) is a solution to

vt − cvz + f (v + ϕ)z − f (ϕ)z = vzz +g(v + ϕ)−g(ϕ).
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For nearby perturbations the leading approximation is given by the

linearization around ϕ:

vt = vzz + (c− f ′(ϕ))vz + (g ′(ϕ)− f ′(ϕ)z)v .

Take v(z , t) = eλ tw(z), where λ ∈ C (growth rate) and w ∈ X Banach,

we obtain an eigenvalue problem:

λw = wzz + (c− f ′(ϕ))wz + (g ′(ϕ)− f ′(ϕ)z)w .

Our choice: X = L2(R;C), stability with respect to small localized

perturbations.

72



The linearized operator around the wave is{
L : L2(R;C)−→ L2(R;C),

L := ∂
2
z +a1(z)∂z +a0(z)I,

(LO)

with dense domain D(L ) = H2(R;C), and where the coefficients,

a1(z) := c− f ′(ϕ),

a0(z) := g ′(ϕ)− f ′(ϕ)z ,

are bounded and periodic, aj (z +T ) = aj (z), ∀z ∈ R, j = 0,1.
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Resolvent and spectra

Definition (resolvent and spectra)

Let L : X → Y be a closed linear operator, with X ,Y Banach and dense

domain D(L )⊂ X . The resolvent of L , ρ(L ), is the set of all complex

numbers λ ∈ C such that L −λ is injective and onto, and (L −λ )−1 is

bounded. The point spectrum of L , σpt(L ), is the set of λ ∈ C such

that L −λ is a Fredholm operator with index zero and non-trivial kernel.

The essential spectrum of L , σess(L ), is the set of all λ ∈ C such that

either L −λ is not Fredholm, or it is Fredholm with non-zero index. The

spectrum of L is defined as σ(L ) = σess(L )∪σpt(L ).
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Spectral stability

Definition (spectral stability)

We say that a bounded periodic wave ϕ is spectrally stable as a solution

to the viscous balance law (VBL) if the L2-spectrum of the linearized

operator around the wave defined in (LO) satisfies

σ(L )|L2 ∩{λ ∈ C : Re λ > 0}= ∅.

Otherwise we say that it is spectrally unstable.
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Floquet characterization of the spectrum

Well-known fact: since the coefficients L are periodic in z , Floquet

theory implies that the L2-spectrum is purely essential or “continuous”,

σ(L )|L2 = σess(L )|L2 , and there are no isolated eigenvalues.

We can parametrize the spectrum in terms of Floquet multipliers of the

form e iθ ∈ S1 (or by θ ∈ R (mod 2π)). Define the set σθ as the set of

complex numbers λ for which there exists a bounded, non-trivial solution

w ∈ L∞(R;C) to the boundary value problem
λw = wzz +

(
c− f ′(ϕ)

)
wz +

(
g ′(ϕ)− f ′(ϕ)z

)
w ,

w(T ) = e iθw(0),

wz(T ) = e iθwz(0),

for some θ ∈ (−π,π].
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Floquet characterization of the spectrum (ii)

Define the Floquet spectrum σF as:

σF :=
⋃

−π<θ≤π

σθ .

Lemma (Floquet characterization of the spectrum)

σ(L )|L2 = σF .

See Jones et al. (2014); Gardner (1993).

Observation: The continuous spectrum σ(L )|L2 can be written as the

union of partial spectra σθ . Each set σθ is discrete as it is the zero set of

an analytic function. If θ = 0 then the boundary conditions become

periodic and σ0 detects perturbations which are co-periodic. The set σπ

detects anti-periodic perturbations.
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Bloch-wave decomposition

Define u(z) := e−iθz/Tw(z). Then the non-separated boundary

conditions transform into periodic ones, ∂
j
zu(T ) = ∂

j
zu(0), j = 0,1, and

the spectral problem is recast as Lθu = λu for a one-parameter family of

Bloch operators:{
Lθ := (∂z + iθ/T )2 +a1(z)(∂z + iθ/T ) +a0(z)I,

Lθ : L2
per([0,T ];C)→ L2

per([0,T ];C),

with domain D(Lθ ) = H2
per([0,T ];C), parametrized by θ ∈ (−π,π].

Their spectrum consists entirely of isolated eigenvalues:

σ(Lθ )|L2
per

= σpt(Lθ )|L2
per

. Moreover, they depend continuously on the

Bloch parameter θ , which is a local coordinate for the spectrum σ(L )|L2

Conclusion: λ ∈ σ(L )|L2 if and only if λ ∈ σpt(Lθ )L2
per

for some

θ ∈ (−π,π]:

σ(L )|L2 =
⋃

−π<θ≤π

σpt(Lθ )|L2
per
.
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Spectral instability of small-amplitude waves

Family of periodic, small-amplitude waves parametrized by

ε := |c− c0| ∈ (0,ε0), c0 = f ′(0). These waves have amplitude of order

|ϕε |, |ϕε
z |= O(

√
ε) and period Tε = 2π√

g ′(0)
+O(ε) =: T0 +O(ε).

The associated spectral problem can be recast in a periodic space.

Consider the following Bloch-type transformation,

y :=
πz

Tε

, u(y) := e−iθy/πw
(Tεy

π

)
,

for given θ ∈ (−π,π]. Then the spectral problem is now

λu =
1

T 2
ε

(
iθ + π∂y

)2
u+

āε
1(y)

Tε

(
iθ + π∂y

)
u+ āε

1(y)u,

where the coefficients

āε
1(y) := c(ε)− f ′(ϕ

ε (Tεy/π)),

āε
0(y) := g ′(ϕ

ε (Tεy/π))− f ′′(ϕ
ε (Tεy/π))ϕ

ε
z (Tεy/π),

are clearly π-periodic in the y variable and where u ∈ H2
per([0,π];C) is

subject to π-periodic boundary conditions, u(0) = u(π), uy (0) = uy (π). 79



Multiply by T 2
ε (constant) to obtain the following equivalent spectral

problem

Lθu = λ̃u, (nL)

for the operator{
Lθ :=

(
iθ + π∂y

)2
+aε

1(y)
(
iθ + π∂y

)
+aε

0(y)I,

Lθ : D(Lθ ) = H2
per([0,π];C)⊂ L2

per([0,π];C)−→ L2
per([0,π];C),

for any given θ ∈ (−π,π] and where

λ̃ := T 2
ε λ ,

aε
1(y) := Tε ā

ε
1(y),

aε
0(y) := T 2

ε ā
ε
0(y).
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Perturbation problem

Let us write (nL) as a perturbation problem. The coefficients can be

written as

aε
1(y) =

(
T0 +O(ε)

)(
c(ε)− f ′(ϕ

ε (Tεy/π))
)

=
√

ε b1(y)

aε
0(y) =

(
T0 +O(ε)

)2
(
g ′(ϕ

ε (Tεy/π))− f ′′(ϕ
ε (Tεy/π))ϕ

ε
z (Tεy/π)

)
= 4π

2 +O(
√

ε).

where

b1(y) :=
1√
ε
aε

1(y) = O(1), y ∈ [0,π].

Thus we write

b0(y) :=
aε

0(y)−4π2

√
ε

= O(1), y ∈ [0,π].
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Now, if we denote η :=
√

ε ∈ (0,
√

ε0) we obtain

Lθu =
(
iθ + π∂y

)2
u+ 4π

2u+ ηb1(y)
(
iθ + π∂y

)
u+ ηb0(y)u

= L 0
θ u+ ηL 1

θ u,

where the operators L 0
θ

and L 1
θ

are defined as{
L 0

θ :=
(
iθ + π∂y

)2
+ 4π

2I,

L 0
θ : D(L 0

θ ) = H2
per([0,π],C)⊂ L2

per([0,π],C)−→ L2
per([0,π],C),{

L 1
θ := b1(y)

(
iθ + π∂y

)
+b0(y)I,

L 1
θ : D(L 1

θ ) = H1
per([0,π],C)⊂ L2

per([0,π],C)−→ L2
per([0,π],C).
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Therefore, (nL) is recast as a perturbed spectral problem of the form

Lθu = L 0
θ u+ ηL 1

θ u = λ̃u, u ∈ H2
per([0,π],C).

Lemma

For each θ ∈ (−π,π], L 1
θ

is L 0
θ

-bounded.

Proof. We need to show that there exist uniform constants α,β ≥ 0

such that

‖L 1
θ u‖L2

per
≤ α‖u‖L2

per
+ β‖L 0

θ u‖L2
per
,

for all u ∈ H2
per([0,π];C).
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Therefore, (nL) is recast as a perturbed spectral problem of the form

Lθu = L 0
θ u+ ηL 1

θ u = λ̃u, u ∈ H2
per([0,π],C).

Lemma

For each θ ∈ (−π,π], L 1
θ

is L 0
θ

-bounded.

Proof. We need to show that there exist uniform constants α,β ≥ 0

such that

‖L 1
θ u‖L2

per
≤ α‖u‖L2

per
+ β‖L 0

θ u‖L2
per
,

for all u ∈ H2
per([0,π];C).
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Upon estimation,

‖L 1
θ u‖L2

per
= ‖b1(y)

(
iθ + ∂y

)
u+b0(y)u‖L2

per

≤ πK1‖uy‖L2
per

+ (πK1 +K0)‖u‖L2
per
,

as |θ | ≤ π, with 0 < K1 := ‖b1‖L∞ , 0 < K0 := ‖b0‖L∞ .

It can be shown that for all u ∈ H2([0,π];C),

‖uy‖L2(0,π) ≤
π

N−1
‖uyy‖L2(0,π) +

2N(N + 1)

π(N−1)
‖u‖L2(0,π),

with N any positive number with N > 1.

Upon substitution,

‖L 1
θ u‖L2

per
≤ C1(N)‖uyy‖L2

per
+C0(N)‖u‖L2

per
,

where

C1(N) =
π2K1

N−1
> 0,

C0(N) = K0 +
K1

N−1

(
π(N−1) + 2N(N + 1)

)
> 0.
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Using

‖L 0
θ
u‖L2

per
= ‖(iθ + π∂y )2u+ 4π2u‖L2

per
≥ π2‖uyy‖L2

per
−‖2iθπuy + (4π2−θ 2)u‖L2

per
,

and choosing N sufficiently large, N ≥ 1 + 4π, we arrive at

‖L 1
θ u‖L2

per
≤ α‖u‖L2

per
+ β‖L 0

θ u‖L2
per
,

with uniform constants

α :=
8C1(N)

π(N−1)

(
π(N−1) +N(N + 1)

)
+C0(N) > 0,

β :=
2C1(N)

π2
> 0.
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Analytic perturbation theory (i)

Take a look at the spectral problem specialized to the case of Bloch

parameter θ = 0,

L0u = L 0
0 + ηL 1

0 u = λ̃u, u ∈ H2
per([0,π];C).

Observe:

• The operator {
L 0

0 = π
2
∂

2
y + 4π

2I,

L 0
0 : L2

per([0,π];C)→ L2
per([0,π];C),

is self-adjoint with a positive eigenvalue λ̃0 = 4π2 associated to the

constant eigenfunction u0(y) = 1/
√

π.
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Analytic perturbation theory (i)

• Upon application of analytic perturbation theory of linear operators

(Kato, 1980; Hislop and Segal, 1996): L 1
0 is L 0

0 -bounded implies

that L0 = L 0
0 + ηL 1

0 has discrete eigenvalues λ̃j (η) in a

η-neighborhood of λ̃0 = 4π2 with multiplicities adding up to m0 if η

is sufficiently small.

• Moreover, since λ̃0 > 0 there holds

Re λj (η) > 0, |η | � 1.

Lemma

For each 0 < η � 1 sufficiently small there holds

σpt(L
0

0 + ηL 1
0 )|L2

per
∩{λ ∈ C : |λ −4π

2|< r(η)} 6= ∅,

for some r(η) = O(η) > 0.
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Spectral instability of small-amplitude waves

Proof of theorem. Now, since η =
√

ε, we conclude that for 0 < ε � 1

sufficiently small there exist discrete eigenvalues λ (ε) ∈ σpt(L 0
0 +
√

εL 1
0 )

such that |λ −4π2| ≤ C
√

ε for some C > 0. Transforming back into the

original problem, this implies that there exist eigenvalues λ = λ (ε) that

satisfy

|λ (ε)−g ′(0)|= O(
√

ε), 0 < ε � 1.

This implies that for ε > 0 small there exist unstable eigenvalues λ (ε)

with Re λ (ε) > 0 of the spectral problem with θ = 0. Let θ vary within

(−π,π] to obtain curves of spectrum that locally remain in the unstable

half plane. We conclude that

σ(L ε )|L2 =
⋃

−π<θ≤π

σ(Lθ )|L2
per
∩{λ ∈ C : Re λ > 0} 6= ∅,

for ε > 0 sufficiently small.
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Figure: Cartoon representation of the unstable real eigenvalue λ0 = g ′(0) > 0

(in red) and of the neighboring unstable eigenvalues λj (ε) (in green) near λ0

for 0 < ε � 1 small for the case of a Floquet exponent θ = 0. By letting θ vary

within (−π,π] we obtain unstable curves of spectrum (in green) of the

linearized operator around the periodic wave.
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Observation:

The “instablility” of u = 0 as equilibrium point of the reaction function

(g ′(0) > 0) is responsible for the spectral instability of the small

amplitude waves bifurcating from the equilibrium. Heuristically, this

result can be interpreted as follows: when ε → 0+ the small-amplitude

periodic waves collapse to the origin and the linearized operator tends

(formally) to a constant coefficient linearized operator around zero,

whose spectrum is determined by a dispersion relation that invades the

unstable half plane thanks to the sign of g ′(0).
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Spectral instability of large period waves

Consider the family of large period waves,

u(x , t) = ϕ
ε (x− c(ε)t),

ϕ
ε (z) = ϕ

ε (z +Tε ), for all z ∈ R,

traveling with speed c = c(ε) and parametrized by ε = |c1− c(ε)|, with

0 < ε < ε1� 1.

The family converges as ε → 0+ to the traveling pulse ϕ0 = ϕ0(x− c1t)

traveling with speed c1 = I1/I0 (homoclinic orbit). The fundamental

period of the family of periodic waves, Tε → ∞ as ε → 0+ at order

O(| log ε|).
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The homoclinic Evans function (i)

Suppose ϕ = ϕ0(z), z = x− c1t is the homoclinic pulse, with

u± = limz→±∞ ϕ(z) = 1. Then the eigenvalue problem L̄ 0u = λu can be

recast as

Wz = A0(z ,λ )W , (SS)

with

W =

(
u

uz

)
, A0(z ,λ ) :=

(
0 1

λ − (g ′(ϕ0)− f ′(ϕ0)z) −c1 + f ′(ϕ0)

)
.

Then, for each λ in the set of consistent splitting,

Ω∞ = {λ ∈ C : Re λ > g ′(1)},

there exists one solution W+(z ,λ ) spanning the stable space of (SS)

decaying as z →+∞, and one unstable solution W−(z ,λ ) decaying as

z →−∞.
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The homoclinic Evans function (ii)

The The homoclinic Evans function is defined as the Wronskian

D(λ ) := det(W−(z ,λ ), W+(z ,λ ))|z=0.

Properties:

• it is not unique but they all differ by appropriate non-vanishing

factors;

• D is analytic on Ω∞;

• it vanishes at λ ∈ Ω∞ if and only if λ ∈ σpt(L )|L2 , with the order of

the zero being the algebraic multiplicity of the eigenvalue.

– See Kapitula and Promislow (2013), Sandstede (2002).
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The periodic Evans function (i)

In the case of a periodic wave ϕ = ϕ(z), with period T , the matrix

A(z ,λ ) is T -periodic in z and we may apply Floquet theory for ODEs.

Let F = F(z ,λ ) denote fundamental solution with initial condition

F(0,λ ) = I for every λ ∈ C. The T -periodicity in z of the coefficients A

then implies that F(z +T ,λ ) = F(z ,λ )M(λ ) for all z ∈ R, where

M(λ ) := F(T ,λ ) is the monodromy matrix, and it is an entire function

of λ ∈ C.

It can be shown that λ ∈ σ(L )|L2 if and only if there exists µ ∈ C with

|µ|= 1 such that

det(M(λ )−µI) = 0.

(At least one of the eigenvalues of the monodromy matrix, also known as

Floquet multipliers, lies in complex unit circle.)
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The periodic Evans function (ii)

Gardner (1993) defines the periodic Evans function as the restriction of

the above determinant to µ in the unit circle S1 ⊂ C,

D(λ ,θ) := det(M(λ )− e iθ I).

For each θ ∈ R (mod 2π), the periodic Evans function is an entire

function of λ ∈ C whose isolated zeroes are particular points of the

(continuous) spectrum λ ∈ σ(L )|L2 . Each θ ∈ (−π,π] is precisely the

Bloch parameter associated to a Floquet multiplier of the form e iθ . For

each θ fixed, the zeroes of the analytic function D(λ ,θ) are discrete and

coincide in order (multiplicity) and location with the discrete Bloch

spectrum, σpt(Lθ )|L2
per

.

– See Kapitula and Promislow (2013), Gardner (1993).
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Instability of the pulse

Theorem

The traveling pulse solution is spectrally unstable: there exists λ̄0 > 0

(real and strictly positive) such that λ̄0 ∈ σpt(L̄ 0). Moreover, this

eigenvalue is simple.

This is a well-known fact from Sturm-Liouville theory (see Kapitula and

Promislow (2013)).
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Approximation theorem for large spatial period (i)

Upon homoclinic bifurcation and approximation as ε → 0+ of the large

period waves, one can show that for every |λ | ≤M (constant), there

holds

Tε = O(| log ε|)→ ∞, as ε → 0+,

|A0(z ,λ )−A0
∞| ≤ C (M)e−θ̄ |z |, for all z ∈ R,

|A0(z ,λ )−Aε (z ,λ )| ≤ C (M)e−κTε/2, for all |z | ≤ Tε

2
,

(**)

for some uniform constants C (M),κ, θ̄ > 0.
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Approximation theorem for large spatial period (Ii)

Conditions (**) are the structural assumptions for convergence of

periodic spectra in the infinite-period limit to that of the underlying

homoclinic wave:

Theorem (Gardner (1997); Yang and Zumbrun (2019))

Assume (**). Then on a compact set K ⊂ Ω∞ such that the homoclinic

Evans function D0 = D0(λ ) does not vanish on ∂K , the spectra of L ε

for Tε sufficiently large (or equivalently, for any 0 < ε < ε2 with

0 < ε2� 1 sufficiently small) consists of loops of spectra Λε

k,j ⊂ C,

k = 1, . . . ,mj , in a neighborhood of order O(e−ηTε/(2mj )) of the

eigenvalues λj of L̄ 0, where mj denotes the algebraic multiplicity of λj

and 0 < η < min{κ, θ̄}.
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Spectral instability of large period waves

Proof of theorem.

Under (H1) - (H6), the family of periodic waves with large period, ϕε , as

well as the traveling pulse, ϕ0, satisfy (**).

Let λ̄0 > 0 be the real, simple and positive eigenvalue associated to the

traveling pulse. Since C+ ⊂ Ω∞ and λ̄0 > 0 is simple, then we can take a

closed contour Γ around λ̄0 such that K = Γ∪ (intΓ) is a small compact

set contained in Ω∞ with no eigenvalues of L̄ 0 on ∂K = Γ. Then from

the approximation theorem: there exists ε̄1 := min{ε1,ε2}> 0 small such

that for all 0 < ε < ε̄1 there exists a loop of Floquet spectrum Λε ⊂ C in

a small neighborhood around λ̄0 of order O(e−κTε/2) = O(ε) of

eigenvalues of the linearized operator L ε around ϕε .

This loop does not necessarily contain λ̄0 but belongs to a

O(ε)-neighborhood. We conclude that the spectrum L ε for each

periodic wave ϕε with 0 < ε < ε̄1 is contained in the unstable half

plane.
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Figure: Cartoon representation of the unstable, simple, real eigenvalue, λ̄0 > 0

(in red), of the linearized operator L̄ 0 around the homoclinic loop. For

0 < ε � 1 sufficiently small there exists a unique loop of spectra, Λε (in blue),

of the linearized operator L ε around the periodic wave inside an unstable

O(ε)-neighborhood of λ̄0.
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Conclusions



Conclusions

• With classical bifurcation techniques it is possible to deduce the

existence of periodic bounded waves for a large class of equations

(viscous balance laws).

• One family of small amplitude waves (Hopf bifurcation).

• One family of large period waves (homoclinic bifurcation).

• We also examine the Floquet spectrum of the linearization around

both families.

• By analytic perturbation theory (small-amplitude waves) or

homoclinic approximation theory (large period waves) we found that

both families are spectrally unstable.

• For many equations with structure (Hamiltonian, completely

integrable), spectral stability is a prerequisite for their nonlinear

(orbital) instability.

• The same waves are modulationally stable for the Burgers-Fisher

equation.
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