
A SOBOLEV-TYPE INEQUALITY WITH APPLICATIONS

RAMÓN G. PLAZA

Abstract. In this note, a Sobolev-type inequality is proved. Applications
to obtaining linear decay rates for perturbations of viscous shocks are also
discussed.

1. The inequality

The purpose of this contribution is to prove the following

Theorem 1. Let ψ be a real-valued smooth localized function with non-zero integral,∫
R
ψ(x) dx = M 6= 0, (1)

satisfying ∫
R
|xi∂jψ(x)| dx ≤ C, for all i, j ≥ 0. (2)

Then there exists a uniform constant C∗ > 0 such that

sup
x
|u(x)| ≤ C∗ ‖u‖1/2L2 ‖ux − αψ‖1/2L2 , (3)

for all u ∈ H1(R) and all α ∈ R.

Clearly, this result is an extension of the well-known Sobolev-type inequality

‖u‖2∞ ≤ 2‖u‖L2‖ux‖L2 . (4)

Inequality (3) may be useful while studying the asymptotic behavior of solutions to
evolution equations that decay to a manifold spanned by a certain function ψ (see
Section 2 below). It is somewhat surprising that the result holds for all α ∈ R. The
crucial fact is that the antiderivative of ψ cannot be in L2, thanks to hypothesis
(1). In this fashion we avoid the case ux ∈ span{ψ}.

We would like to establish (3) by extremal functions. Since the solution to the
minimization problem associated with (3) may not exist, our approach consists of
studying a parametrized family of inequalities for which we can explicitly compute
extremal functions for each parameter value.

Theorem 2. Under the assumptions of Theorem 1, there exists a constant c∗ > 0
such that

c∗ ≤ ρ−1‖u‖2L2 + ρ‖ux − αψ‖2L2 , (5)
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for all ρ > 0, α ∈ R, and u in a dense subset of H1(R) with u(0) = 1. Moreover,
c∗ is also uniform under translation ψ̃(·) = ψ(· + y), where y ∈ R (even though
hypothesis (2) is not uniform by translation).

Proposition 1.1. Theorem 2 implies Theorem 1.

Proof. It suffices to show that

|u(0)| ≤ C∗‖u‖1/2L2 ‖ux − αψ‖1/2L2 , (6)

with uniform C∗ > 0, also by translation. Indeed, we can always take, for any
y ∈ R, ũ(x) := u(x+ y), ψ̃(x) := ψ(x+ y), yielding

|u(y)| = |ũ(0)| ≤ C∗‖ũ‖1/2L2 ‖ũx − αψ̃‖1/2L2

= C∗‖u(·+ y)‖1/2L2 ‖ux(·+ y)− αψ(·+ y)‖1/2L2

= C∗‖u‖1/2L2 ‖ux − αψ‖1/2L2 , ∀y ∈ R,

by uniformity of C∗ and by translation invariance of Lp norms. This shows (3).
Now assume Theorem 2 holds. If u(0) = 0 then (6) holds trivially. In the case

u(0) 6= 0, consider ũ = u/u(0), α̃ = α/u(0) and apply (5),

c∗u(0)2 ≤ ρ−1‖u‖2L2 + ρ‖ux − αψ‖2L2 .

Minimizing over ρ yields ρ = ‖u‖L2/‖ux − αψ‖L2 , so that

c∗u(0)2 ≤ 2‖u‖L2‖ux − αψ‖L2 .

This proves (6) with C∗ =
√

2/c∗. �

Therefore, we are left to prove Theorem 2.

1.1. Proof of Theorem 2. Without loss of generality assume that

‖ψ‖L2 = 1. (7)

Since u ∈ H1, we may use the Fourier transform, and the constraint u(0) = 1
becomes ∫

R
û(ξ) dξ = 1, (8)

up to a constant involving π. Note that the expression on the right of (5) defines
a family of functionals parametrized by ρ > 0,

J ρ[u] := ρ−1

∫
R
|û(ξ)|2 dξ + ρ

∫
R
|iξû(ξ)− αψ̂(ξ)|2 dξ. (9)

We shall see by direct computation that the minimizer u exists and its unique (given
by a simple formula) for each ρ and α. Denote û = v + iw, ψ̂ = η + iθ (real and
imaginary parts). Then each functional (9) can be written as

J ρ[u] = ρ−1

∫
R
(v2+w2) dξ+ρ

∫
R
(ξ2(v2+w2)+2αξ(wη−vθ)+α2(η2+θ2)) dξ. (10)

The constraint (8) splits into
∫
v dξ = 1 and

∫
w dξ = 0. Hence, we have the

following minimization problem

min
u∈H1(R)

J ρ[(v, w)]
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subject to

I1[(v, w)] =
∫

R
v dξ − 1 = 0,

I2[(v, w)] =
∫

R
w dξ = 0,

for each ρ > 0 and α ∈ R. The Lagrange multiplier conditions
1
2D(h1,0)J [(v, w)] = µD(h1,0)I1[(v, w)],
1
2D(0,h2)J [(v, w)] = νD(0,h2)I2[(v, w)],

yield ∫
R
(ρ−1v + ρξ2v − ραθξ)h1 dξ = µ

∫
R
h1 dξ,∫

R
(ρ−1w + ρξ2w + ραηξ)h2 dξ = ν

∫
R
h2 dξ,

for some (µ, ν) ∈ R2 and for all test functions (h1, h2). Therefore

ρ−1v + ρξ2v − ραξθ = µ,

ρ−1w + ρξ2w + ραξη = ν.

Denote λ = µ + iν. Multiply the second equation by i, and solve for v and w to
obtain

û =
ρλ− iαρ2ξψ̂(ξ)

1 + ρ2ξ2
. (11)

Equation (11) is, in fact, the expression for the minimizer. Whence, we can compute
the minimum value of J ρ for each ρ > 0, in terms of λ and α. Substituting (11)
one obtains (after some computations),

ρ−1|û|2 + ρ|iξû− αψ̂|2 =
ρ(|λ|2 + α2|ψ̂|2)

1 + ρ2ξ2

Hence we easily find that the minimum value of J ρ is given by

J ρ
min = |λ|2

∫
R

ρdξ

1 + ρ2ξ2
+ α2ρ

∫
R

|ψ̂(ξ)|2

1 + ρ2ξ2
dξ

= π|λ|2 + α2Γ(ρ), (12)

where

Γ(ρ) := ρ

∫
R

|ψ̂(ξ)|2

1 + ρ2ξ2
dξ. (13)

Now we find the Lagrange multiplier λ in terms of α using the constraint (8),
which implies

1 = λ

∫
R

ρdξ

1 + ρ2ξ2
− αρ2

∫
R

iξψ̂(ξ)
1 + ρ2ξ2

dξ = λπ + αΘ(ρ),

where

Θ(ρ) := −ρ2

∫
R

iξψ̂(ξ)
1 + ρ2ξ2

dξ. (14)

Solving for λ we find,

λ =
1
π

(1− αΘ(ρ)). (15)
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Observe that since ψ is real, then ψ̂(ξ) = ψ̂(−ξ) and therefore Θ(ρ) ∈ R for all
ρ > 0. This readily implies that λ ∈ R and, upon substitution in (12), that

J ρ
min =

1
π

(1− αΘ(ρ))2 + α2Γ(ρ). (16)

The latter expression is a real quadratic polynomial in α ∈ R. Minimizing over α
we get

α =
Θ(ρ)

πΓ(ρ) + Θ(ρ)2
∈ R. (17)

Thus, we can substitute (17) in (16), obtaining in this fashion the lower bound

J ρ
min ≥ I(ρ) :=

Γ(ρ)
πΓ(ρ) + Θ(ρ)2

> 0.

Remark 1.2. The choice (17) corresponds to taking α =
∫
iξûψ̂dξ ∈ R, as the

reader may easily verify using (11). Intuitively, the most we can do with α in (9)
is to remove the ψ̂-component of û. In other words, if we minimize ‖ux − αψ‖L2

over α we obtain α =
∫
uxψ dx /

∫
ψ2 dx =

∫
iξû

¯̂
ψdξ (recall ‖ψ‖L2 = 1). We can

substitute its value in the expression of the minimizer to compute the lower bound
I(ρ).

We do not need to show that (11) is the actual minimizer. The variational
formulation simply helped us to compute a lower bound for the functional in terms
of ρ. Next, we study the behavior of Θ(ρ) and Γ(ρ) for all ρ > 0. We are particularly
interested in what happens for large ρ. In addition, we have to prove that the lower
bound is uniform in y ∈ R if we substitute ψ(·) by ψ(· + y), a property that was
required in the proof of Proposition 1.1.

Lemma 1.3. There holds

(i) Γ(ρ) ∈ R+ for all ρ > 0 and it is invariant under translation ψ(·) → ψ(·+y)
for any y ∈ R,

(ii) C−1ρ ≤ Γ(ρ) ≤ Cρ for ρ ∼ 0+, and some C > 0,
(iii) Γ(ρ) → πM2 as ρ→ +∞,
(iv) Θ(ρ) ≤ Cρ2 for ρ ∼ 0+, and
(v) Θ(ρ) is uniformly bounded under translation ψ(·) → ψ(· + y) with y ∈ R,

as ρ→ +∞.

Proof. (i) is obvious, as | ̂ψ(·+ y)(ξ)| = |eiξyψ̂(ξ)| = |ψ̂(ξ)|; also by (1), it is clear
that Γ(ρ) > 0, for all ρ > 0. (ii) follows directly from Γ(ρ) ≤ ρ

∫
|ψ̂|2dξ = ρ for all

ρ > 0, because of (7), and from noticing that

Γ(ρ) =
∫

R

|ψ̂(ζ/ρ)|2

ζ2 + 1
dζ =

∫
|ζ|≤1

+
∫
|ζ|≥1

≥ 1
2

∫
|ζ|≤1

|ψ̂(ζ/ρ)|2 dζ =
ρ

2

∫
|ξ|≤1/ρ

|ψ̂(ξ)|2 dξ.

Since ‖ψ‖L2 = 1, we have for ρ sufficiently small,∫
|ξ|≤1/ρ

|ψ̂(ξ)|2 dξ ≥ 1
2
,

and thus Γ(ρ) ≥ 1
4ρ = C−1ρ for ρ ∼ 0+.
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To prove (iii), notice that |ψ̂| is bounded, ψ̂(ζ/ρ) → ψ̂(0) as ρ→ +∞ pointwise,
and (ζ2 + 1)−1 is integrable; therefore we clearly have

Γ(ρ) =
∫

R

|ψ̂(ζ/ρ)|2

ζ2 + 1
dζ −→

∫
R

|ψ̂(0)|2

1 + ζ2
dζ = π|ψ̂(0)|2 = πM2 > 0,

as ρ→ +∞.
(iv) follows directly from hypothesis (2), as

|Θ(ρ)| ≤ ρ2

∫
R

|ξψ̂(ξ)|
1 + ρ2ξ2

dξ ≤ ρ2

∫
R
|ξψ̂(ξ)| dξ ≤ Cρ2.

Note that this estimate is valid also by translation, even though ψ(·+ y) may not
satisfy (2).

In order to prove (v), we first assume that ψ itself satisfies (1) and (2). Split the
integral into two parts,

Θ(ρ) = −
∫
|ξ|≤1

iξψ̂(ξ)
ξ2 + 1/ρ2

dξ −
∫
|ξ|≥1

iξψ̂(ξ)
ξ2 + 1/ρ2

dξ := I1 + I2.

I2 is clearly bounded as ρ→ +∞ by hypothesis (2),

|I2| ≤
∫
|ξ|≥1

|ξψ̂(ξ)|
ξ2 + 1/ρ2

dξ ≤
∫

R
|ξψ̂(ξ)| dξ ≤ C.

Denote

φ(ξ) :=

{
1
ξ (ψ̂(ξ)− ψ̂(0)) for ξ 6= 0,
dψ̂
dξ (0) for ξ = 0.

φ is continuous. Then, I1 can be further decomposed into

I1 = −ψ̂(0)
∫
|ξ|≤1

iξ dξ

ξ2 + 1/ρ2
dξ −

∫
|ξ|≤1

iξ2φ(ξ)
ξ2 + 1/ρ2

dξ.

The first integral is clearly zero for all ρ > 0, and the second is clearly bounded as∫
|ξ|≤1

ξ2|φ(ξ)|
ξ2 + 1/ρ2

dξ ≤
∫
|ξ|≤1

|φ(ξ)| dξ ≤ C.

Therefore, Θ(ρ) is bounded as ρ→ +∞.
Now, let us suppose that ψ(·) = ψ0(·+y) for some fixed y ∈ R, y 6= 0, and where

ψ0 satisfies (1) and (2). Then clearly ψ̂(ξ) = eiξyψ̂0(ξ) and

Θ(ρ) = −
∫

R

iξeiξyψ̂0(ξ)
ξ2 + 1/ρ2

dξ.

Assume that y > 0 (the case y < 0 is analogous); then consider the function

g(z) =
izeizyψ̂0(z)
z2 + 1/ρ2

,

for z in Im z > 0, and take the upper contour C = [−R,R] ∪ {z = Reiθ; θ ∈ [0, π]},
for some R > 0 large. Then g(z) is analytic inside C except at the simple pole
z = i/ρ. (When y < 0 one takes the lower contour that encloses the pole at
z = −i/ρ.) By complex integration of g along C in counterclockwise direction, and
by the residue theorem, one gets∫

C
g(z) dz = 2πiResz=i/ρ g(z) = −πe−y/ρψ̂0(i/ρ).
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Therefore it is easy to see that the value Θ(ρ) is uniformly bounded in y ∈ R as

|Θ(ρ)| ≤ π|ψ̂0(i/ρ)| → π|M | > 0

when ρ→ +∞. This completes the proof of the lemma. �

Remark 1.4. If we consider the solution uρ to

−uxx +
1
ρ2
u = ψx, (18)

then, after taking Fourier transform, one finds

ûρ(ξ) =
iξψ̂(ξ)

ξ2 + 1/ρ2
,

so that uρ(0) =
∫
ûρdξ = −Θ(ρ). The claim that uρ(0) is bounded as ρ → +∞ is

plausible because in the limit (formally) we have −uρxx = ψx or uρx = −ψ. Since
ψ is integrable, uρ should be bounded. The bound Θ(ρ) ∼ e−|y|/ρ represents the
(slow) exponential decay of the Green’s function solution to (18).

In Lemma 1.3, we have shown that Θ(ρ) and Γ(ρ) are uniformly bounded for ρ
large and in y ∈ R. The same applies to I(ρ). For ρ near 0, since both tend to zero
as ρ→ 0+, by L’Hôpital rule we get

lim
ρ→0+

I(ρ) = lim
ρ→0+

Γ′(ρ)
πΓ′(ρ) + 2Θ(ρ)Θ′(ρ)

= π−1 > 0,

because (ii) implies Γ′(ρ)|ρ=0+ ≥ C−1 > 0, and Θ′(ρ) is bounded as ρ→ 0+ by (iv).

Therefore, the constant I(ρ) is uniformly bounded from above and below for all
ρ > 0, in particular for ρ→ +∞. This implies the uniform boundedness from below
of J ρ

min and of J ρ[u] for all u in the constrained class of functions considered in
Theorem 2. Furthermore, the lower bound is uniform by translation as well. This
completes the proof.

�

Remark 1.5. The corresponding Fourier L1 estimate

‖û‖L1 ≤ C‖û‖1/2L2 ‖iξû− αψ̂‖1/2L2 ,

(from which the result could be directly deduced), does not hold. Here it is a
counterexample: let ψ be a nonnegative function with compact support and let Ψ
be its antiderivative. Set

u(x) := Ψ(x)−Ψ(x/L),

where L > 0 is large. Then there is R > 0 such that u vanishes outside |x| ≤ RL.
Henceforth ‖u‖L2 ≤ CL for some C > 0. Moreover, we also have ux−ψ = ψ(x)/L,
and consequently ‖ux−ψ‖L2 ≤ C/L. This implies that the product ‖u‖L2‖ux−ψ‖L2

remains uniformly bounded in L. Now, the Fourier transform of u is

û(ξ) = Ψ̂(ξ)− LΨ̂(Lξ) =
i

ξ

(
ψ̂(Lξ)− ψ̂(ξ)

)
.

Since ψ̂ has compact support, it vanishes outside |ξ| ≤ R̃, for some R̃ > 0. Now,
|ψ̂(0)| = M > 0 implies that |ψ̂(ξ)| > 0 near ξ = 0, and we can choose L sufficiently
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large such that |ψ̂(ξ)| ≥ c0 for R̃/L ≤ |ξ| ≤ δ∗/2, where δ∗ = sup {δ > 0 ; |ψ̂(ξ)| > 0
for 0 ≤ |ξ| < δ}, and c0 is independent of L. Therefore

|û(ξ)| = |ψ̂(ξ)|
|ξ|

≥ c0
|ξ|
,

for all R̃/L ≤ |ξ| ≤ δ∗/2, and the L1 norm of û behaves like

‖û‖L1 ≥ c0

∫
R̃/L≤|ξ|≤δ∗/2

dξ

|ξ|
∼ c0 lnL → +∞,

as L→ +∞.

2. Applications to viscous shock waves

To illustrate an application of uniform inequality (3), consider a scalar conser-
vation law with second order viscosity,

ut + f(u)x = uxx, (19)

where (x, t) ∈ R× [ 0,+∞), f is smooth, and f ′′ ≥ a > 0 (convex mode). Assume
the triple (u−, u+, s) (with u+ < u−) is a classical shock front [5] satisfying the
Rankine-Hugoniot jump condition, f(u+)− f(u−) = s(u+ − u−), and Lax entropy
condition f ′(u+) < s < f ′(u−). A shock profile [1] is a traveling wave solution to
(19) of form u(x, t) = ū(x− st), where ū satisfies ū′′ = f(ū)x − sū′, with ′ = d/dz,
z = x − st, and ū → u± as z → ±∞. Without loss of generality we can assume
s = 0 by normalizing f (see e. g. [3]), so that f(u±) = 0, f ′(u+) < 0 < f ′(u−) and
the profile equation becomes

ūx = f(ū). (20)

Such profile solution exists, and under the assumptions, it is both monotone ūx < 0
and exponentially decaying up to two derivatives

|∂jx(ū(x)− u±)| . e−c|x|,

for j = 0, 1, 2 and some constant c > 0 (see [7, 8]). Here (and in the sequel), “.”
means “≤” times a harmless positive constant. We will show that the following con-
sequence of Theorem 1 is useful to obtain decay rates for solutions to the linearized
equations for the perturbed problem.

Lemma 2.1. Let ū be the shock profile solution to (20). Then

‖u‖2L∞ . ‖u‖L2‖ux − αūx‖L2 , (21)

for all u ∈ H1(R) and all α ∈ R.

Proof. Follows immediately from Theorem 1 with ψ = ūx, which satisfies hypothe-
ses (1) and (2), as ūx is exponentially decaying and has non-zero integral [u] 6= 0. �

Consider a solution to (19) of form u+ ū, being u a perturbation; linearizing the
resulting equation around the profile we obtain

ut = Lu := uxx − (f ′(ū)u)x, (22)

where L is a densely defined linear operator in, say, L2. In [4], Goodman introduced
the flux transform F : W 1,p → Lp, where

Fu := ux − f ′(ū)u,
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as a way to cure the negative sign of f ′′(ū)ūx < 0. That is, if u solves (22) then
clearly its flux variable v := Fu satisfies the “integrated” equation [2],

ut = Lu := uxx − f ′(ū)ux, (23)

which leads to better energy estimates. Another feature of the flux transform formu-
lation is the following inequality (see [4] for details, or [6] – Chapter 4, Proposition
4.6 – for the proof).

Lemma 2.2 (Poincaré-type inequality). There exist a constant C > 0 such that
for all 1 ≤ p ≤ +∞ and u ∈ Lp,

‖u− δūx‖Lp ≤ C‖Fu‖Lp , (24)

where δ is given by

δ =
1
Z

∫
R
uūx dx, (25)

and Z =
∫

R ū
2
x dx > 0 is a constant.

Here we illustrate an application of the uniform estimate (21) to obtain sharp
decay rates for the solutions to the linearized perturbation equation, using the flux
formulation due to Goodman.

Proposition 2.3 (Goodman [4]). For all global solutions to ut = Lu, with suitable
initial condition, there holds

‖u(t)− δ(t)ūx‖L∞ . t−1/2‖u(0)‖W 1,1 , (26)

where δ(t) is given by (25).

Remark 2.4. This is a linear stability result with sharp decay rate (the power t−1/2

is that of the heat equation, and therefore, optimal). Notice also that δ(t) depends
on t, corresponding (at least at this linear level) to an instantaneous projection
onto the manifold spanned by ū. Thus, an uniform inequality for all δ ∈ R such as
(21) is very useful. For a comprehensive discussion on (nonlinear) “wave tracking”
and stronger results, see Zumbrun [9].

Remark 2.5. The formal adjoint of the integrated operator is given by

L∗u := uxx + (f ′(ū)u)x.

Note that if v and w are solutions to vt = Lv and wt = −L∗w, respectively, then

d

dt

∫
R
v(t)w(t) dx =

∫
R
(wLv − vL∗w) dx = 0,

and hence ∫
R
v(t)w(t) dx =

∫
R
v(0)w(0) dx, for all t ≥ 0.

In the sequel, we gloss over many details, such as global existence of solutions,
or the initial conditions in suitable spaces, which are standard and can be found
elsewhere [2, 9], and concentrate on filling out the details of the proof of Proposition
2.3, originally sketched in [4].
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2.1. Energy estimates. We start with the basic energy estimate.

Lemma 2.6. Let v be a solution to either vt = Lv or vt = L∗v. Then for all
t ≥ s ≥ 0 we have the basic energy estimate

1
2
d

dt
‖v(t)‖2L2 ≤ −‖vx(t)‖2L2 −

1
2

∫
R
f ′′(ū)|ūx|v(t)2 dx < 0, (27)

and,

‖v(t)‖2L2 ≤ ‖v(s)‖2L2 , (28)∫ t

s

‖vx(τ)‖2L2 dτ ≤
1
2
‖v(s)‖2L2 , (29)∫ t

s

∫
R
f ′′(ū)|ūx|v(τ)2 dxdτ ≤ ‖v(s)‖2L2 . (30)

Proof. Follows by standard arguments. Multiply vt = Lv by v and integrate by
parts once to get (27). Likewise, multiply vt = L∗v by v and integrate by parts
twice to arrive at the same estimate. The negative sign in (27) is a consequence
of the compressivity of the wave f ′′(ū)ūx < 0. Estimates (28)-(30) follow directly
from (27). �

Next, we establish decay rates for vt and w, solutions to vt = Lv and wt = L∗w.

Lemma 2.7. Let v be a solution to vt = Lv. Then the following decay rate holds

‖vt(t)‖L2 . t−1/2‖v(0)‖L2 , (31)

for all t ≥ 2.

Proof. First observe that vt = Fvx, and therefore vtt = (Fvx)t = Fvtx = Lvt, that
is, vt solves the integrated equation, and hence, estimates (27)-(30) hold for vt as
well. In particular, the L2 norm of vt is decreasing. To show (31) it suffices to
prove

‖vt(t)‖2L2 . ‖vx(s)‖2L2 , (32)
for all t > s+1, s ≥ 0. Indeed, integrate (32) in s ∈ [0, t− 1] and use (29) to obtain

‖vt(t)‖2L2 . (t− 1)−1

∫ t−1

0

‖vx(s)‖2L2 ds . (t− 1)−1‖v(0)‖2L2 ≤ 2t−1‖v(0)‖2L2 ,

yielding (31) for all t ≥ 2.
To show (32) differentiate vt = Lu with respect to x, multiply by vx and integrate

by parts to obtain
1
2
d

dt
‖vx(t)‖2L2 = −‖vxx(t)‖2L2 −

1
2

∫
R
f ′(ū)xv2

x dx ≤M‖vx(t)‖2L2 , (33)

where M := sup |f ′(ū)x|. By Gronwall’s inequality

‖vx(T + t)‖2L2 ≤ eMt‖vx(T )‖2L2 , (34)

for all t, T ≥ 0. Integrate (33) in t ∈ [s, T ],

‖vx(T )‖2L2 ≤ ‖vx(s)‖2L2 −
∫ T

s

‖vxx(τ)‖2L2 dτ −
1
2

∫ T

s

∫
R
f ′(ū)xvx(τ)2 dxdτ. (35)

Estimate the last integral using (34), to obtain∣∣∣ ∫ T

s

∫
R
f ′(ū)xv2

x dxdτ
∣∣∣ ≤M

∫ T−s

0

eMτ‖vx(τ)‖2L2 dτ ≤ eM(T−s)‖vx(s)‖2L2 .
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Upon substitution in (35),∫ T

s

‖vxx(τ)‖2L2 dτ ≤ 1
2 (1 + eM(T−s))‖vx(s)‖2L2 .

Likewise, from (34) it is easy to show that∫ T

s

∫
R
|f ′(ū)|vx(τ)2 dxdτ ≤

m

M
eM(T−s)‖vx(s)‖2L2 ,

where m := sup |f ′(ū)|. Denoting µ(t) := max{ 1
2 (1 + eMt), (m/M)eMt}, we see

that both ∫ T

s

‖vxx(τ)‖2L2dτ, and
∫ T

s

∫
R
|f ′(ū)|vx(τ)2 dxdτ,

are bounded by µ(T−s)‖vx(s)‖2L2 . Since the L2 norm of vt is decreasing, integrating
inequality (28) for vt we obtain

(T − s)‖vt(T )‖2L2 ≤
∫ T

s

‖vt(τ)‖2L2 dτ =
∫ T

s

‖(Lv)(τ)‖2L2 dτ

.
∫ T

s

‖vxx(τ)‖2L2 dτ +
∫ T

s

∫
R
|f ′(ū)|vx(τ)2 dxdτ

. µ(T − s)‖vx(s)‖2L2 .

Choose T − s ≡ 1 to finally arrive at

‖vt(t)‖2L2 ≤ ‖vt(1 + s)‖2L2 . µ(1)‖vx(s)‖2L2 ,

for all t > 1 + s, establishing (32). This proves the lemma. �

Lemma 2.8. Let w be a solution to wt = L∗w. Then, the following decay rate
holds

‖w(t)‖L∞ . t−1/4‖w(0)‖L2 , (36)
for all t > 0.

Proof. Recall that (27)-(30) hold for w. In particular, by convexity f ′′ ≥ a > 0 and
(30), we have ∫ t

0

∫
R
|ūx|w(τ)2 dxdτ ≤ a−1‖w(0)‖2L2 , (37)

for all t ≥ 0. Differentiate wt = L∗w with respect to x, multiply by wx and integrate
by parts to obtain, for all t ≥ 0,
1
2
d

dt
‖wx(t)‖2L2 = −‖wxx(t)‖2L2 −

3
2

∫
R
f ′′(ū)|ūx|wx(t)2 dx−

1
2

∫
R
f ′(ū)xxxw(t)2 dx.

The first two terms on the right hand side have the right sign for decay. We must
control the term −

∫
f ′(ū)xxxw2 dx. For that purpose, use the equation for w and

the profile equation to compute
1
2
d

dt

∫
R
|ūx|w(t)2 dx = −

∫
R
|ūx|wx(t)2 dx−

∫
R
f ′′(ū)|ūx|2w(t)2 dx.

This provides the cancellation we need, as the decreasing L2 norm we seek will be
that of wx plus a multiple of |ūx|1/2w. First note that, by smoothness and convexity
of f , there exists A > 0 such that

|f ′(ū)xxx| ≤ A|ūx|2.
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This implies
d

dt

(
1
2‖wx(t)‖

2
L2 + 1

2Aa
−1

∫
R
|ūx|w(t)2 dx

)
=

= −‖wxx(t)‖2L2 −
3
2

∫
R
f ′′(ū)|ūx|wx(t)2 dx −

1
2

∫
R
f ′(ū)xxxw(t)2 dx+

−Aa−1

∫
R
|ūx|wx(t)2 dx−Aa−1

∫
R
f ′′(ū)|ūx|2w(t)2 dx

≤ J(t)− A

2

∫
R
|ūx|2w(t)2 dx,

where

J(t) := −‖wxx(t)‖2L2 −
3
2

∫
R
f ′′(ū)|ūx|wx(t)2 dx−Aa−1

∫
R
|ūx|wx(t)2 dx ≤ 0,

for all t ≥ 0. Denoting Ā = Aa−1 and defining

R(t) := ‖wx(t)‖2L2 + Ā

∫
R
|ūx|w(t)2 dx,

we have thus shown that R(t) is the decaying norm we were looking for, as dR/dt ≤
0. Integrating R(t) ≤ R(τ) according to custom with respect to τ ∈ [0, t], for fixed
t ≥ 0, and using (29) and (37), one can estimate

tR(t) ≤
∫ t

0

R(τ) dτ ≤ 1
2‖w(0)‖2L2 + Āa−1‖w(0)‖2L2 . ‖w(0)‖2L2 .

Therefore,
‖wx(t)‖L2 . t−1/2‖w(0)‖L2 ,

for all t > 0. Using (4) and (28) we obtain

‖w(t)‖L∞ . ‖wx(t)‖1/2L2 ‖w(t)‖1/2L2 . t−1/4‖w(0)‖L2 ,

as claimed. �

2.2. Proof of Proposition 2.3. If u solves ut = Lu, then its flux transform v =
Fu is a solution to vt = Lv. Apply the uniform inequality (21) to v, substituting
α by

δ̃(t) =
1
Z

∫
R
vx(t)ūx dx,

(with Z =
∫

R |ūx|
2 dx), and use the Poincaré-type inequality (24) (with p = 2), to

obtain

‖v(t)‖2L∞ . ‖v(t)‖L2‖vx − δ̃(t)ūx‖L2 . ‖v(t)‖L2‖(Fvx)(t)‖L2 = ‖v(t)‖L2‖vt(t)‖L2 .

Then, using estimate (31), we arrive at

‖v(t)‖2L∞ . (t− s)−1/2‖v(s)‖2L2 , (38)

for all t ≥ s+ 2, s ≥ 0. For fixed T > 0 define the linear functional A : L2 → R as

Ag :=
∫

R
v(T )g dx,

for all g ∈ L2, with norm

‖A‖ = sup
‖g‖L2=1

∣∣∣ ∫
R
v(T )g dx

∣∣∣.
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For every g ∈ L2 with ‖g‖L2 = 1, we solve the equation wt = −L∗w = −wxx −
(f ′(ū)w)x on t ∈ [0, T ] “backwards” in time, with w(T ) = g. Thus, by Remark 2.5∣∣∣ ∫

R
v(T )g dx

∣∣∣ =
∣∣∣ ∫

R
v(T )w(T ) dx

∣∣∣ =
∣∣∣ ∫

R
v(0)w(0) dx

∣∣∣ ≤ ‖v(0)‖L1‖w(0)‖L∞ ,

for all T > 0. Making the change of variables w̃(x, t) = w(x, T − t) we readily see
that w̃ satisfies w̃t = L∗w̃ with w̃(0) = g, and we can use estimate (36), yielding

‖w(0)‖L∞ = ‖w̃(T )‖L∞ . T−1/4‖g‖L2 .

Thus,

‖v(T )‖L2 = sup
‖g‖L2=1

∣∣∣ ∫
R
v(T )g dx

∣∣∣ ≤ ‖v(0)‖L1‖w(0)‖L∞ . T−1/4‖v(0)‖L1 ,

for all T > 0. Choose s = t/2 in (38), and apply last estimate with T = t/2, to get

‖v(t)‖L∞ . (t/2)−1/4‖v(t/2)‖L2 . t−1/2‖v(0)‖L1 , (39)

for t large, which corresponds to the optimal decay rate for solutions to the inte-
grated equation.

To prove the decay rate (26) for the original solution to the unintegrated equation
ut = Lu, apply the Poincaré-type inequality again (now with p = +∞) together
with (39) to finally arrive at

‖u(t)− δ(t)ūx‖L∞ . ‖v(t)‖L∞ . t−1/2‖v(0)‖L1 . t−1/2‖u(0)‖W 1,1 .

This completes the proof.
�
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