Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas



## Spectral stability of periodic wavetrains Lecture 3. Evans function techniques

#### Ramón G. Plaza

Institute of Applied Mathematics (IIMAS), National Autonomous University of Mexico (UNAM)



II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 1/91

## **Sponsors**

- DGAPA-UNAM, program PAPIIT, grant no. IN-104814.
- FAPESP, São Paulo, processo 2015/12543-4.





Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 2/91

# The Evans function

- The monodromy matrix for periodic problems
- Application: non-linear Klein-Gordon wavetrains



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 3/91

- The **Evans function** is an analytic function of the spectral parameter designed to locate point spectra within its natural domain
- It has analytic extensions beyond its natural domain, for example, within some distance into the essential spectrum
- Plays a fundamental role in understanding bifurcations associated with point spectra that are ejected from the essential spectrum of the linearized operator under perturbation
- Conceptually lies at the interface of dynamical systems and functional analysis



- The **Evans function** is an analytic function of the spectral parameter designed to locate point spectra within its natural domain
- It has analytic extensions beyond its natural domain, for example, within some distance into the essential spectrum
- Plays a fundamental role in understanding bifurcations associated with point spectra that are ejected from the essential spectrum of the linearized operator under perturbation
- Conceptually lies at the interface of dynamical systems and functional analysis



- The **Evans function** is an analytic function of the spectral parameter designed to locate point spectra within its natural domain
- It has analytic extensions beyond its natural domain, for example, within some distance into the essential spectrum
- Plays a fundamental role in understanding bifurcations associated with point spectra that are ejected from the essential spectrum of the linearized operator under perturbation
- Conceptually lies at the interface of dynamical systems and functional analysis



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 4/91

- The **Evans function** is an analytic function of the spectral parameter designed to locate point spectra within its natural domain
- It has analytic extensions beyond its natural domain, for example, within some distance into the essential spectrum
- Plays a fundamental role in understanding bifurcations associated with point spectra that are ejected from the essential spectrum of the linearized operator under perturbation
- Conceptually lies at the interface of dynamical systems and functional analysis



- The zeroes of the Evans function coincide with the complex numbers in the point spectrum
- The order of the zero is the same as the algebraic multiplicity of the eigenvalue
- The construction of the Evans function has a geometric motivation, associated with the analysis of the spectrum of the exponentially asymptotic linear operators
- The eigenvalue problem is recast as a **dynamical system**, and look at the eigenvalue problem not as an existence problem, but as an intersection problem for stable/unstable subspaces associated with the dynamical system



- The zeroes of the Evans function coincide with the complex numbers in the point spectrum
- The order of the zero is the same as the algebraic multiplicity of the eigenvalue
- The construction of the Evans function has a geometric motivation, associated with the analysis of the spectrum of the exponentially asymptotic linear operators
- The eigenvalue problem is recast as a **dynamical system**, and look at the eigenvalue problem not as an existence problem, but as an intersection problem for stable/unstable subspaces associated with the dynamical system



- The zeroes of the Evans function coincide with the complex numbers in the point spectrum
- The order of the zero is the same as the algebraic multiplicity of the eigenvalue
- The construction of the Evans function has a geometric motivation, associated with the analysis of the spectrum of the exponentially asymptotic linear operators
- The eigenvalue problem is recast as a **dynamical system**, and look at the eigenvalue problem not as an existence problem, but as an intersection problem for stable/unstable subspaces associated with the dynamical system



- The zeroes of the Evans function coincide with the complex numbers in the point spectrum
- The order of the zero is the same as the algebraic multiplicity of the eigenvalue
- The construction of the Evans function has a geometric motivation, associated with the analysis of the spectrum of the exponentially asymptotic linear operators
- The eigenvalue problem is recast as a **dynamical system**, and look at the eigenvalue problem not as an existence problem, but as an intersection problem for stable/unstable subspaces associated with the dynamical system



- This perspective is highly versatile, it allows a simple generalization to unbounded domains, to higher-order systems, to eigenvalue pencils, and to multi-dimensional problems
- The Evans function affords insight that is not easily motivated by the classical formulation of the eigenvalue problem
- While functional analysis provides the proper posing of questions, it is dynamical systems that give many of the answers
- It's a very intense area of research!



- This perspective is highly versatile, it allows a simple generalization to unbounded domains, to higher-order systems, to eigenvalue pencils, and to multi-dimensional problems
- The Evans function affords insight that is not easily motivated by the classical formulation of the eigenvalue problem
- While functional analysis provides the proper posing of questions, it is dynamical systems that give many of the answers
- It's a very intense area of research!



- This perspective is highly versatile, it allows a simple generalization to unbounded domains, to higher-order systems, to eigenvalue pencils, and to multi-dimensional problems
- The Evans function affords insight that is not easily motivated by the classical formulation of the eigenvalue problem
- While functional analysis provides the proper posing of questions, it is dynamical systems that give many of the answers
- It's a very intense area of research!



- This perspective is highly versatile, it allows a simple generalization to unbounded domains, to higher-order systems, to eigenvalue pencils, and to multi-dimensional problems
- The Evans function affords insight that is not easily motivated by the classical formulation of the eigenvalue problem
- While functional analysis provides the proper posing of questions, it is dynamical systems that give many of the answers
- It's a very intense area of research!



## History

- The concept first appeared in the work of **J. W. Evans** on the stability of pulses in nerve axons in the mid 70s
- C.K.R.T. Jones, in the early 80s, realized the importance of the Evans function and applied it to the stability of the FitzHugh-Nagumo pulse
- Alexander, Gardner and Jones (1990) finally formalized the concepts and recast the Evans function in a dynamical systems language
- **Pego and Weinstein** (1994) showed that the Evans function plays a key role in determining the stability of the Korteweg de Vries soliton



- **Gardner** (1994) set the foundations for applying Evans function to periodic problems
- Independently, Gardner and Zumbrun (1998) and Kapitula and Sandstede (1998) proved the Gap Lemma, a technical result that allows to extend the Evans function beyond its natural domain (and into the essential spectrum)
- Zumbrun (1998-2006) and collaborators pushed Evans function techniques into the stability analysis of viscous shock profiles via Green's function estimates
- Evans function techniques are currently applied to a great variety of structures beyond pulses and fronts: breathers, time and spatially periodic waves, discrete structures, etc.



## • The Evans function

# The monodromy matrix for periodic problems

# Application: non-linear Klein-Gordon wavetrains



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 9/91

# Spectral system with periodic coefficients

Consider a generic spectral problem, arising form the linearization around a periodic traveling wave solution f = f(z), with fundamental period T, f(z+T) = f(z). **First order formulation**:

$$\mathbf{w}_z = \mathbf{A}(z, \lambda) \mathbf{w}, \qquad \mathbf{w} \in H^1(\mathbb{R}; \mathbb{C}^n),$$

Coefficients  $\mathbf{A}(z, \lambda)$  are  $L^{\infty}$  and periodic in  $z \in \mathbb{R}$ , analytic in  $\lambda \in \mathbb{C}$ .



Family of closed, densely defined operators:

 $\mathcal{T}(\lambda):\mathcal{D}\subset X\to X$ 

$$\mathcal{T}(\boldsymbol{\lambda})\mathbf{w} := \mathbf{w}_z - \mathbf{A}(z,\boldsymbol{\lambda})\mathbf{w}.$$

$$\mathcal{D} = H^n(\mathbb{R}; \mathbb{C}^n), \quad X = L^2(\mathbb{R}; \mathbb{C}^n),$$

Spectral stability of periodic waves with respect to **localized perturbations**.



## Monodromy matrix

Let  $\mathbf{F}(z, \lambda)$  denote the fundamental solution matrix for the first order system,

$$\mathbf{F}_{z}(z,\lambda) = \mathbf{A}(z,\lambda)\mathbf{F}(z,\lambda),$$

with initial condition  $\mathbf{F}(0,\lambda) = \mathbf{I}$ ,  $\forall \lambda \in \mathbb{C}$ . The *T*-periodicity in *z* of the coefficient matrix **A** then implies that

 $\mathbf{F}(z+T,\lambda) = \mathbf{F}(z,\lambda)\mathbf{M}(\lambda), \quad \forall z \in \mathbb{R}, \quad \text{where} \quad \mathbf{M}(\lambda) := \mathbf{F}(T,\lambda)$ 

#### The matrix $M(\lambda)$ is the monodromy matrix.

**Important feature:** A entire in  $\lambda$ , Picard iterates converge for **F** in *z* bounded  $\Rightarrow$  **M** is an **entire** (analytic) function of  $\lambda \in \mathbb{C}$ .



## Monodromy matrix

Let  $\mathbf{F}(z, \lambda)$  denote the fundamental solution matrix for the first order system,

$$\mathbf{F}_{z}(z,\boldsymbol{\lambda}) = \mathbf{A}(z,\boldsymbol{\lambda})\mathbf{F}(z,\boldsymbol{\lambda}),$$

with initial condition  $\mathbf{F}(0,\lambda) = \mathbf{I}$ ,  $\forall \lambda \in \mathbb{C}$ . The *T*-periodicity in *z* of the coefficient matrix **A** then implies that

 $\mathbf{F}(z+T,\lambda) = \mathbf{F}(z,\lambda)\mathbf{M}(\lambda), \quad \forall z \in \mathbb{R}, \quad \text{where} \quad \mathbf{M}(\lambda) := \mathbf{F}(T,\lambda)$ 

The matrix  $\mathbf{M}(\lambda)$  is the **monodromy matrix**.

**Important feature:** A entire in  $\lambda$ , Picard iterates converge for **F** in *z* bounded  $\Rightarrow$  **M** is an **entire** (analytic) function of  $\lambda \in \mathbb{C}$ .



#### Floquet multipliers:

 $\lambda \in \sigma$  if and only if there exists at least one  $\mu \in \mathbb{C}$  (Floquet multiplier) with  $|\mu| = 1$  such that

$$\hat{D}(\lambda,\mu) := \det(\mathbf{M}(\lambda) - \mu \mathbf{I}) = 0.$$

 $\mu = \mu(\lambda) = e^{i\theta(\lambda)}$  are the eigenvalues of  $\mathbf{M}(\lambda)$ .  $\theta = \theta(\lambda)$  are called the Floquet exponents.



## Periodic Evans function

## Definition (Gardner, 1997)

The **periodic Evans function**  $D: \mathbb{C} \times \mathbb{R} \to \mathbb{C}$  is defined as

$$D(\lambda, \theta) := \hat{D}(\lambda, e^{i\theta}),$$

that is, the restriction of the determinant  $\hat{D}(\lambda,\mu)$  to the unit circle  $S^1 \subset \mathbb{C}$  in the second argument, which is to be regarded as a unitary parameter. Thus, for each fixed  $\theta \in \mathbb{R} \pmod{2\pi}$ , is an entire function of  $\lambda \in \mathbb{C}$  whose (isolated) zeros are particular points of the (continuous) spectrum  $\sigma$ .



#### Properties: (Gardner 1997, 1998)

- σ is the set of all λ ∈ C such that D(λ,θ) = 0 for some real θ.
- D is analytic in  $\lambda$  and  $\theta$ .
- The order of the zero in  $\lambda$  is the multiplicity of the eigenvalue.
- $\hat{D}(\lambda, 1) = D(\lambda, 0)$  detects spectra corresponding to perturbations which are *T*-periodic.



#### ${\rm I~I~M~A~S}$

## Floquet spectrum

Boundary value problem of the form

 $\mathbf{w}_z = \mathbf{A}(z, \lambda) \mathbf{w},$  wbounded,

$$\mathbf{w}(T) = e^{i\theta}\mathbf{w}(0), \qquad \theta \in \mathbb{R}$$

For a given  $\theta \in \mathbb{R}$  we define  $\sigma_{\theta} \subset \mathbb{C}$  to be the set of complex  $\lambda$  for which there exists a nontrivial, **bounded** solution. The Floquet spectrum  $\sigma_F$  is defined then as the union over  $\theta$  of these sets:

$$\sigma_F := \bigcup_{-\pi < \theta \le \pi} \sigma_{\theta}.$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 16/91

#### **Observations:**

- We have shown that  $\sigma = \sigma_F$  (Lecture 1)
- Each set  $\sigma_{\theta}$  is discrete: zero set of the entire function  $\det(\mathbf{M}(\lambda) e^{i\theta}I)$
- The set  $\sigma_0$  (with  $\theta = 0$ ) is the part of the spectrum corresponding to perturbations which are co-periodic (periodic partial spectrum)
- $\theta$  local coordinate; **curves of spectrum**: if  $D_{\lambda}(\lambda_0, \theta_0) \neq 0, D_{\theta}(\lambda_0, \theta_0) \neq 0$  then  $\sigma$  is a smooth local curve
- At points where derivatives vanish: spectral analytic arcs (e.g. at  $\lambda = 0$ !)



# Applications

#### Curves of spectrum

The real angle parameter  $\theta$  is typically a local coordinate for the spectrum  $\sigma$  as a real subvariety of the complex  $\lambda$ -plane. This explains the intuition that the  $L^2$ -spectrum is purely "continuous", and gives rise to the notion of **curves of spectrum**:

### Lemma (Kapitula and Promislow (2013))

Suppose that  $\lambda_0 \in \sigma$  corresponding to a Floquet multiplier  $\mu_0 \in S^1$ , and suppose that  $\hat{D}_{\lambda}(\lambda_0, \mu_0) \neq 0$  and  $\hat{D}_{\mu}(\lambda_0, \mu_0) \neq 0$ . Then there is a complex neighborhood  $\Omega$  of  $\lambda_0$  such that  $\sigma \cap \Omega$  is a smooth curve through  $\lambda_0$ .



**Proof**: We work with the determinant  $\hat{D}$  in terms of the Floquet multiplier  $\mu$ . Since  $\hat{D}_{\lambda}(\lambda_0, \mu_0) \neq 0$ , it follows from the Analytic Implicit Function Theorem that the characteristic equation  $\hat{D}(\lambda, \mu) = 0$  may be solved locally for  $\lambda$  as an analytic function  $\lambda = l(\mu)$  of  $\mu \in \mathbb{C}$  near  $\mu = \mu_0 = e^{i\theta_0}$  with  $l(\mu_0) = \lambda_0$ . The spectrum near  $\lambda_0$  is therefore the image of the map *l* restricted to the unit circle near  $\mu_0$ , that is,  $\lambda = l(e^{i\theta})$  for  $\theta \in \mathbb{R}$  near  $\theta_0$ . But then  $D_{\mu}(\lambda_0,\mu_0) \neq 0$  implies that  $dl(e^{i\theta})/d\theta \neq 0$  at  $\theta = \theta_0$ , which shows that the parametrization is regular, i.e., the image is a smooth curve (in fact, an analytic arc) passing through the point  $\lambda_0$ .



#### Formation of "islands"

The Evans function can help to prove spectral properties for the Bloch-wave decomposition. We first establish that the spectra of  $\mathcal{L}$  consists of closed curves.

## Theorem (Kapitula and Promislow (2013))

Let C be a simple closed curve oriented in the positive sense, which does not intersect  $\sigma$ . Then the winding number

$$W(\theta) = rac{1}{2\pi i} \oint_{\mathcal{C}} rac{D_{\lambda}(\lambda, \theta)}{D(\lambda, \theta)} d\lambda,$$

is constant for  $\theta \in (-\pi, \pi]$ . Moreover, if W(0) = 1 then the spectra inside of C forms a smooth, closed curve



**Proof sketch**: Let  $C \subset \mathbb{C}$  be a positively oriented simple closed curve that does not intersect  $\sigma$ . Let  $W(\theta)$  be the winding number and suppose that  $W(\theta_0) = m$ . That is, there are *m* eigenvalues (counting multiplicity) of  $\mathcal{L}_{\Theta_0}$  inside C. Since the integrand is analytic in both  $\lambda$  and  $\theta$ , we have that  $W(\theta)$  is analytic in  $\theta$  as long as the curve C does not intersect any spectra. As the winding number is integer-valued, it must be constant as long as a zero of the Evans function does not intersect the curve C, which is precisely excluded by the assumption.



If in addition W(0) = 1, then  $W(\theta) = 1$  for all  $\theta \in (-\pi, \pi]$ ; whence, for each  $\theta$  there is a unique  $\lambda = \lambda(\theta)$  for which  $D(\lambda(\theta), \theta) = 0$ . Since the eigenvalue is simple it can be shown that

 $D_{\lambda}(\lambda(\theta), \theta) \neq 0.$ 

The implicit function theorem implies that the curve  $\lambda = \lambda(\theta)$  is of class  $C^{\infty}$ . To show that the curve is closed, notice that  $\lambda(-\pi) = \lambda(\pi)$ , inasmuch as the eigenvalue problems are identical, with boundary condition  $\mathbf{w}(T,\lambda) = e^{i\theta}\mathbf{w}(0,\lambda)$ .





Figure : Typical spectra (green curves) for periodic problems. The curve C is the thin closed curve in blue. Image credit: Kapitula and Promislow (Springer, 2013).

IRMAS

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 23/91

## Further comments: Numerics

Possible numerical procedure:

- First, compute all solutions to for  $\theta = 0$  (periodic perturbations). This can be done by discretizing the operator  $\mathcal{L}_0$  or  $\mathcal{T}$  with periodic boundary conditions using finite differences or pseudo-spectral methods (Ascher et al., 1988), and to compute the spectrum of the resulting large matrix using eigenvalue-solvers (LAPACK)
- Second, once we have calculated all eigenvalues for  $\theta = 0$ , we can **utilize continuation codes** (e.g., AUTO97) to compute the solutions for  $\theta \neq 0$  by using path-following of the solutions for  $\theta = 0$  in  $\theta$  (example, Sandstede and Scheel (2000))



## Further comments: Numerics

Possible numerical procedure:

- First, compute all solutions to for  $\theta = 0$  (periodic perturbations). This can be done by discretizing the operator  $\mathcal{L}_0$  or  $\mathcal{T}$  with periodic boundary conditions using finite differences or pseudo-spectral methods (Ascher et al., 1988), and to compute the spectrum of the resulting large matrix using eigenvalue-solvers (LAPACK)
- Second, once we have calculated all eigenvalues for  $\theta = 0$ , we can **utilize continuation codes** (e.g., AUTO97) to compute the solutions for  $\theta \neq 0$  by using path-following of the solutions for  $\theta = 0$  in  $\theta$  (example, Sandstede and Scheel (2000))



• This approach works well if for each solution  $(\lambda_0, \theta_0)$ , there is a curve of spectrum passing through it. "Islands" which are not connected to any eigenvale at  $\theta = 0$  cannot be reached by continuation.
- Whitham's theory has been used by physicists for more than 50 years
- Surprisingly, its relation to spectral stability of periodic waves has been elucitaded only recently
- The connection is made through the **Evans function**: allows to analyze  $\lambda = 0$  as a point in the curve spectrum, and to define an **index** (related to the hyperbolicty of the Whitham system) which determines its behaviour inside the curve (arc splitting)
- The analysis rigorously justifies calculations by Whitham's methods and clarifies the connection to spectral stability



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 26/91

- Whitham's theory has been used by physicists for more than 50 years
- Surprisingly, its relation to spectral stability of periodic waves has been elucitaded only recently
- The connection is made through the **Evans function**: allows to analyze  $\lambda = 0$  as a point in the curve spectrum, and to define an **index** (related to the hyperbolicty of the Whitham system) which determines its behaviour inside the curve (arc splitting)
- The analysis rigorously justifies calculations by Whitham's methods and clarifies the connection to spectral stability



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 26/91

- Whitham's theory has been used by physicists for more than 50 years
- Surprisingly, its relation to spectral stability of periodic waves has been elucitaded only recently
- The connection is made through the **Evans function**: allows to analyze  $\lambda = 0$  as a point in the curve spectrum, and to define an **index** (related to the hyperbolicty of the Whitham system) which determines its behaviour inside the curve (arc splitting)
- The analysis rigorously justifies calculations by Whitham's methods and clarifies the connection to spectral stability



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 26/91

- Whitham's theory has been used by physicists for more than 50 years
- Surprisingly, its relation to spectral stability of periodic waves has been elucitaded only recently
- The connection is made through the **Evans function**: allows to analyze  $\lambda = 0$  as a point in the curve spectrum, and to define an **index** (related to the hyperbolicty of the Whitham system) which determines its behaviour inside the curve (arc splitting)
- The analysis rigorously justifies calculations by Whitham's methods and clarifies the connection to spectral stability





#### Main references:

- Serre (2005); Oh, Zumbrun (2006) (viscous conserv. laws)
- Bronski, Johnson (2010); Johnson, Zumbrun (2010);
   Bronski, Johnson, Zumbrun (2010) (gKdV)
- Johnson (2010) (BBM)
- Noble, Rodrigues (2013) (Kuramoto-Sivashinski)
- Benzoni, Noble, Rodrigues (2014) (Hamiltonian PDEs)
- Jones *et. al* (2013, 2014) (sine-Gordon and non-linear Klein-Gordon)



## • The Evans function

- The monodromy matrix for periodic problems
- Application: non-linear Klein-Gordon wavetrains



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 28/91

## The non-linear Klein-Gordon equation

### Non-linear Klein-Gordon with periodic potential:

$$u_{tt} - u_{xx} + V'(u) = 0.$$
 (nKG)

for  $(x,t) \in \mathbb{R} \times [0,+\infty)$ , *u* scalar,  $V \in C^2$ , periodic. Sine-Gordon equation:

$$u_{tt} - u_{xx} + \sin u = 0, \qquad (SG)$$

 $V(u) = 1 - \cos u.$ 



## The non-linear Klein-Gordon equation

### Non-linear Klein-Gordon with periodic potential:

$$u_{tt} - u_{xx} + V'(u) = 0.$$
 (nKG)

for  $(x,t) \in \mathbb{R} \times [0,+\infty)$ , *u* scalar,  $V \in C^2$ , periodic.

#### Sine-Gordon equation:

$$u_{tt} - u_{xx} + \sin u = 0, \qquad (SG)$$

$$V(u) = 1 - \cos u.$$



## Traveling waves

u(x,t) = f(x-ct), z = x - ct, solution to the nonlinear pendulum equation:

$$(c^2 - 1)f_{zz} + V'(f(z)) = 0,$$

#### Sine-Gordon case:

$$(c^2 - 1)f_{zz} + \sin(f(z)) = 0,$$

$$c\in\mathbb{R}$$
 (wave speed),  $c^{2}
eq1.$ 

Upon integration:

$$\frac{1}{2}(c^2 - 1)f_z^2 = E - V(f),$$

E = constant (energy). Under assumptions:  $0 < E < E_0 = \max V(u)$ 

Sine-Gordon case:  $V(u) = 1 - \cos u$ ,  $E_0 = 2$ ,

$$\frac{1}{2}(c^2 - 1)f_z^2 = E - 1 + \cos f(z).$$

#### W.I.o.g.

(d) V has fundamental period  $P = 2\pi$  and

$$\min_{u\in\mathbb{R}}V(u)=0,\qquad \max_{u\in\mathbb{R}}V(u)=2.$$



## Classification

First dichotomy (wave speed):

- Subluminal waves:  $c^2 < 1$
- Superluminal waves:  $c^2 > 1$

Second dichotomy (energy *E*):

- Librational wavetrain: f(z+T) = f(z). Closed trajectory inside the separatrix in the phase portrait.
- **Rotational** wavetrain:  $f(z+T) = f(z) \pm 2\pi$ . Open trajectory outside the separatrix in the phase plane. Sign  $f_z$  is fixed.



## Classification

First dichotomy (wave speed):

- Subluminal waves:  $c^2 < 1$
- Superluminal waves:  $c^2 > 1$

Second dichotomy (energy *E*):

- Librational wavetrain: f(z+T) = f(z). Closed trajectory inside the separatrix in the phase portrait.
- Rotational wavetrain:  $f(z+T) = f(z) \pm 2\pi$ . Open trajectory outside the separatrix in the phase plane. Sign  $f_z$  is fixed.



## Domain for parameters (E, c)

$$\begin{split} & \mathbb{G}^{\text{lib}}_{<} = \{c^2 < 1, \ 0 < E < E_0\}, \ \text{(subluminal librational)}, \\ & \mathbb{G}^{\text{rot}}_{<} = \{c^2 < 1, \ E < 0\}, \qquad \text{(subluminal rotational)}, \\ & \mathbb{G}^{\text{lib}}_{>} = \{c^2 > 1, \ 0 < E < E_0\}, \ \text{(superluminal librational)}, \\ & \mathbb{G}^{\text{rot}}_{>} = \{c^2 > 1, \ E > E_0\}, \qquad \text{(superluminal rotational)}, \end{split}$$

$$(E,c) \in \mathbb{G} := \mathbb{G}^{\mathrm{lib}}_{<} \cup \mathbb{G}^{\mathrm{rot}}_{<} \cup \mathbb{G}^{\mathrm{lib}}_{>} \cup \mathbb{G}^{\mathrm{rot}}_{>}$$

For each fixed  $z\in\mathbb{R}, f(z;E,c)$  is of class  $C^2$  in  $(E,c)\in\mathbb{G}$ 



## Domain for parameters (E, c)

$$\begin{split} & \mathbb{G}^{\text{lib}}_{<} = \{c^2 < 1, \ 0 < E < E_0\}, \ \text{(subluminal librational)}, \\ & \mathbb{G}^{\text{rot}}_{<} = \{c^2 < 1, \ E < 0\}, \qquad \text{(subluminal rotational)}, \\ & \mathbb{G}^{\text{lib}}_{>} = \{c^2 > 1, \ 0 < E < E_0\}, \ \text{(superluminal librational)}, \\ & \mathbb{G}^{\text{rot}}_{>} = \{c^2 > 1, \ E > E_0\}, \qquad \text{(superluminal rotational)}, \end{split}$$

$$(E,c) \in \mathbb{G} := \mathbb{G}^{\mathrm{lib}}_{<} \cup \mathbb{G}^{\mathrm{rot}}_{<} \cup \mathbb{G}^{\mathrm{lib}}_{>} \cup \mathbb{G}^{\mathrm{rot}}_{>}$$

For each fixed  $z \in \mathbb{R}$ , f(z; E, c) is of class  $C^2$  in  $(E, c) \in \mathbb{G}$ 



# Spectral problem for non-linear Klen Gordon periodic wavetrains

Boundary value problem of the form

$$(c^2 - 1)w_{zz} - 2c\lambda w_z + (\lambda^2 + V''(f(z)))w = 0,$$
 (P)

$$egin{pmatrix} w(T) \ w_z(T) \end{pmatrix} = e^{i heta} egin{pmatrix} w(0) \ w_z(0) \end{pmatrix}, \quad heta \in \mathbb{R}.$$

For a given  $\theta \in \mathbb{R}$  we define  $\sigma_{\theta} \subset \mathbb{C}$  to be the set of complex  $\lambda$  for which there exists a nontrivial solution. The Floquet spectrum  $\sigma_F$  is defined then as the union over  $\theta$  of these sets:

$$\sigma_F := \bigcup_{-\pi < \theta \le \pi} \sigma_{\theta}.$$

## First order system

Problem (P) (quadratic pencil) can be written as a first order system:

 $\mathbf{w}_{z} = \mathbf{A}(z, \lambda) \mathbf{w},$  $\mathbf{w} := \begin{pmatrix} w \\ w_{z} \end{pmatrix},$  $\mathbf{A}(z, \lambda) := \begin{pmatrix} 0 & 1 \\ -\frac{(\lambda^{2} + V''(f(z)))}{c^{2} - 1} & \frac{2c\lambda}{c^{2} - 1} \end{pmatrix}.$ 

Monodromy matrix  $\mathbf{M}(\lambda) := \mathbf{F}(T, \lambda)$ , with  $\mathbf{F}$  identity-normalized fundamental matrix.

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 35/91



#### IIMAS

## Symmetries of the spectrum

The nonlinear Klein-Gordon equation is a real Hamiltonian system, and this forces certain elementary symmetries on the spectrum  $\sigma$ .

#### Lemma

The spectrum  $\sigma$  is symmetric with respect to reflection in the real and imaginary axes, i.e., if  $\lambda \in \sigma$ , then also  $\lambda^* \in \sigma$  and  $-\lambda \in \sigma$  (and hence also  $-\lambda^* \in \sigma$ ).

**Proof**: Let  $\lambda \in \sigma$ . Then there exists  $\theta \in \mathbb{R}$  for which  $\lambda \in \sigma_{\theta}$ , that is, there is a nonzero solution w(z) of the first order boundary-value problem.



Since V''(f(z)) is a real-valued function, it follows by taking complex conjugates that  $w(z)^*$  is a nonzero solution of the same boundary-value problem but with  $e^{i\theta}$  replaced by  $e^{-i\theta}$  and  $\lambda$  replaced by  $\lambda^*$ . It follows that  $\lambda^* \in \sigma_{-\theta} \subset \sigma$ . The fact that  $-\lambda \in \sigma$  follows from the fact that the spectral problem is invariant under the transformation  $(z,\lambda) \rightarrow -(z,\lambda)$ , and it is easy to show that  $\mathbf{M}(-\lambda) = \sigma_3^{-1}\mathbf{M}(\lambda)\sigma_3$ , where  $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  is the Jacobi matrix.



#### IIMAS

## Solutions at $\lambda = 0$

$$f = f(z; E, c), (E, c) \in \mathbb{G}.$$

w solution to pencil (P), with initial conditions:

$$\begin{split} w(0;E,c) = & f(0;E,c) \\ &= \begin{cases} f(T;E,c), & E \in (0,E_0), \\ f(T;E,c) - \pi, & E \in (-\infty,0) \cup (E_0,+\infty), \text{ (rot)}, \end{cases} \end{split}$$

$$\partial_z w(0; E, c) = f_z(0; E, c) = f_z(T; E, c)$$



System at  $\lambda = 0$ :

 $\mathbf{w}_z = \mathbf{A}(z, 0)\mathbf{w},$ 

$$\mathbf{A}(z,0) = \begin{pmatrix} 0 & 1 \\ -V''(f(z))/(c^2 - 1) & 0 \end{pmatrix}.$$

#### Lemma

The two-dimensional complex vector space of solutions is spanned by

$$\mathbf{w}_0(z) = \begin{pmatrix} f_z \\ f_{zz} \end{pmatrix}, \text{ and } \mathbf{w}_1(z) = \begin{pmatrix} f_E \\ f_{Ez} \end{pmatrix}.$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 39/91 System at  $\lambda = 0$ :

 $\mathbf{w}_z = \mathbf{A}(z, 0)\mathbf{w},$ 

$$\mathbf{A}(z,0) = \begin{pmatrix} 0 & 1 \\ -V''(f(z))/(c^2 - 1) & 0 \end{pmatrix}.$$

### Lemma

The two-dimensional complex vector space of solutions is spanned by

$$\mathbf{w}_0(z) = \begin{pmatrix} f_z \\ f_{zz} \end{pmatrix}$$
, and  $\mathbf{w}_1(z) = \begin{pmatrix} f_E \\ f_{Ez} \end{pmatrix}$ .

**Proof**: *f* is a  $C^2$  function of *E* and *z*. Differentiating equation with respect to *z* yields  $(c^2 - 1)f_{zzz} + V''(f)f_z = 0$ . This proves that  $\mathbf{w} = \mathbf{w}_0(z)$  is a solution when  $\lambda = 0$ . On the other hand, differentiating the equation with respect to *E* one gets  $(c^2 - 1)f_{zzE} + V''(f)f_E = 0$ , proving that  $\mathbf{w} = \mathbf{w}_1(z)$  is a solution for  $\lambda = 0$  as well. To verify independence of  $\mathbf{w}_0$  and  $\mathbf{w}_1$ , differentiate equation for *f* with respect to *E*:

$$(c^2-1)f_zf_{zE} = 1 - V'(f)f_E.$$

Combining this with  $(c^2 - 1)f_{zz} + V'(f) = 0$ , one obtains

$$\det(\mathbf{w}_0(z), \mathbf{w}_1(z)) = f_z f_{Ez} - f_E f_{zz} = \frac{1}{c^2 - 1} \neq 0.$$

Hence the Wronskian never vanishes and they are linearly independent for all z and for all  $(E,c) \in \mathbb{G}$ .



#### Solution matrix:

$$\mathbf{Q}(z,0) := (\mathbf{w}_0(z), \mathbf{w}_1(z))$$

$$\mathbf{F}(z,0) = \mathbf{Q}(z,0)\mathbf{Q}(0,0)^{-1}.$$

$$\mathbf{M}(0) = \mathbf{F}(T,0) = \mathbf{Q}(T,0)\mathbf{Q}(0,0)^{-1}$$

$$\mathbf{Q}(z,0)^{-1} = (c^2 - 1) \begin{pmatrix} f_{Ez} & -f_E \\ -f_{zz} & f_z \end{pmatrix}.$$

### Lemma

If  $T_E \neq 0$ , there exists a basis in  $\mathbb{R}^2$  such that the monodromy map  $\mathbf{M}(\lambda)$  at  $\lambda = 0$  has the Jordan form

$$\mathbf{M}(0) \sim \begin{pmatrix} 1 & -T_E \\ 0 & 1 \end{pmatrix}$$

**Proof**: The matrix  $\mathbf{Q}_0(0)$  may be expressed in terms of the initial functions  $u_0$  and  $v_0$  defined on  $\mathbb{G}$ 

$$\mathbf{Q}_0(0) = \begin{pmatrix} v_0 & \partial_E u_0 \\ 0 & \partial_E v_0 \end{pmatrix} = \begin{pmatrix} v_0 & 0 \\ 0 & \partial_E v_0 \end{pmatrix},$$

where  $\partial_E$  denotes the partial derivative with respect to *E*, because  $u_0$  is piecewise constant on  $\mathbb{G}$ .



Similarly, we have

$$\mathbf{Q}_0(0)^{-1} = \begin{pmatrix} (c^2 - 1)\partial_E v_0 & 0\\ 0 & (c^2 - 1)v_0 \end{pmatrix}$$

The identity  $(c^2 - 1)v_0\partial_E v_0 = 1$  can be obtained by differentiation of the profile equation for *f* with respect to *E* at z = 0. Hence, the fundamental solution matrix  $\mathbf{F}(z, 0)$  is

$$\mathbf{F}(z,0) = \frac{1}{v_0} \begin{pmatrix} f_z(z) & (c^2 - 1)v_0^2 f_E(z) \\ f_{zz}(z) & (c^2 - 1)v_0^2 f_{Ez}(z) \end{pmatrix}.$$



The corresponding monodromy matrix  $\mathbf{M}(0)$  is obtained by setting z = T in  $\mathbf{F}(z, 0)$ . To simplify the resulting formula, express  $f_{z}(T)$ ,  $f_{zz}(T)$ ,  $f_{E}(T)$  and  $f_{Ez}(T)$  in terms of the functions  $u_0$  and  $v_0$ . Since  $f_7$  and  $f_{77}$  are periodic functions with period T, we have  $f_{z}(T) = f_{z}(0) = v_{0}$  and  $f_{zz}(T) = f_{zz}(0) = 0$ . To express  $f_E(T)$  and  $f_{Ez}(T)$  in terms of  $u_0$  and  $v_0$ , first note that since  $f(T) = f(0) \pmod{2\pi}$ , we may write  $u_0$  as  $u_0 = f(T)$ ; differentiation with respect to E and taking into account that the period T depends on E yields

$$\partial_E u_0 = f_E(T) + T_E f_z(T)$$
  
=  $f_E(T) + T_E f_z(0)$  (because  $f_z$  has period  $T$ )  
=  $f_E(T) + T_E v_0$ .

Therefore, since  $u_0$  is piecewise constant on  $\mathbb{G}$ ,  $f_E(T) = -T_E v_0$ . Similarly, since  $f_z$  has period T, we can write  $v_0 = f_z(T)$ , and then differentiation yields  $\partial_E v_0 = T_E f_{zz}(T) + f_{Ez}(T)$ , and therefore as  $f_{zz}(T) = 0$ ,  $f_{Ez}(T) = \partial_E v_0$ . This yields the form of  $\mathbf{M}(0)$ .

**Observation**:  $\mathbf{Q}(T,0) - \mathbf{Q}(0,0)$  is a rank-one matrix provided that  $T_E \neq 0$ :

$$\mathbf{Q}(T,0) = \mathbf{Q}(0,0) + \begin{pmatrix} 0 & -T_E v_0(E,c) \\ 0 & -T_E \frac{V'(u_0(E,c))}{c^2 - 1} \end{pmatrix}$$



Therefore, since  $u_0$  is piecewise constant on  $\mathbb{G}$ ,  $f_E(T) = -T_E v_0$ . Similarly, since  $f_z$  has period T, we can write  $v_0 = f_z(T)$ , and then differentiation yields  $\partial_E v_0 = T_E f_{zz}(T) + f_{Ez}(T)$ , and therefore as  $f_{zz}(T) = 0$ ,  $f_{Ez}(T) = \partial_E v_0$ . This yields the form of  $\mathbf{M}(0)$ .

**Observation**:  $\mathbf{Q}(T,0) - \mathbf{Q}(0,0)$  is a rank-one matrix provided that  $T_E \neq 0$ :

$$\mathbf{Q}(T,0) = \mathbf{Q}(0,0) + \begin{pmatrix} 0 & -T_E v_0(E,c) \\ 0 & -T_E \frac{V'(u_0(E,c))}{c^2 - 1} \end{pmatrix}$$



Under assumptions on V, we have monotonicity of the period map (Chicone, 1987: criterion for planar Hamiltonian systems):

## Lemma

Under assumptions there holds  $T_E \neq 0$ . More precisely we have:

- (i)  $T_E > 0$  in the rotational subluminal and librational superluminal cases.
- (ii)  $T_E < 0$  in the rotational superluminal and librational subluminal cases.
- Proof: See Jones et. al (2014).



### Lemma

If we define

$$\bar{\Delta} := -\frac{T_E}{c^2 - 1}$$

then

- (a)  $\overline{\Delta} > 0$  for rotational waves.
- (b)  $\bar{\Delta} < 0$  for librational waves.



#### IIMAS

## Solutions series expansions

The Picard iterates for the fundamental solution matrix  $\mathbf{F}(z,\lambda)$  converge uniformly on  $(z,\lambda) \in [0,T] \times K$ ,  $K \subset \mathbb{C}$  an arbitrary compact set. The coefficient matrix  $\mathbf{A}(z,\lambda)$  is entire in  $\lambda$  for each z, thus  $\mathbf{F}(z,\lambda)$  is an entire analytic function of  $\lambda \in \mathbb{C}$  for every  $z \in [0,T]$ . Hence the fundamental solution matrix  $\mathbf{F}(z,\lambda)$  has a convergent Taylor expansion about every point of the complex  $\lambda$ -plane. In particular, the series about the origin has the form

$$\mathbf{F}(z,\lambda) = \sum_{n=0}^{\infty} \lambda^n \mathbf{F}_n(z), \quad z \in [0,T]$$

for some coefficient matrices  $\{\mathbf{F}_n(z)\}_{n=0}^{\infty}$ , and this series has an infinite radius of convergence. Setting  $\lambda = 0$  gives  $\mathbf{F}_0(z) = \mathbf{F}(z, 0)$ , which has already been computed.

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 48/91



IIMAS

For computational purposes we seek expansions for  $\mathbf{Q} = \mathbf{Q}(z, \lambda)$ , solution to

$$\frac{d\mathbf{Q}}{dz} = \mathbf{A}(z,\lambda)\mathbf{Q}.$$

 $\mathbf{Q}(0,\lambda) = \mathbf{Q}(0,0) = (\mathbf{w}_0(0), \mathbf{w}_1(0)),$  for all  $\lambda \in \mathbb{C}$ , Therefore,  $\mathbf{F}(z,\lambda) = \mathbf{Q}(z,\lambda)\mathbf{Q}(0,0)^{-1}$ . By analyticity, one seeks series expansions of the form:

$$\mathbf{Q}(z,\lambda) = \sum_{n=0}^{+\infty} \lambda^n \mathbf{Q}_n(z)$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 49/91 Collecting like powers of  $\lambda$  we obtain a hierarchy of equations:

$$(c^2 - 1)\frac{d\mathbf{Q}_1}{dz} = \mathbf{A}_0(z)\mathbf{Q}_1 + \mathbf{A}_1\mathbf{Q}_0$$

$$(c^2-1)\frac{d\mathbf{Q}_n}{dz} = \mathbf{A}_0(z)\mathbf{Q}_n + \mathbf{A}_1\mathbf{Q}_{n-1} + \mathbf{A}_2\mathbf{Q}_{n-2}, \quad n = 2, 3, \dots$$

Solution by variation of parameters:

$$\mathbf{Q}_1(z) = \frac{\mathbf{Q}_0(z)}{c^2 - 1} \int_0^z \mathbf{Q}_0(y)^{-1} \mathbf{A}_1 \mathbf{Q}_0(y) \, dy$$

$$\mathbf{Q}_{n}(z) = \frac{\mathbf{Q}_{0}(z)}{c^{2} - 1} \int_{0}^{z} \mathbf{Q}_{0}(y)^{-1} \left( \mathbf{A}_{1} \mathbf{Q}_{n-1}(y) + \mathbf{A}_{2} \mathbf{Q}_{n-2} \right) dy, \ n \ge 2$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 50/91 Collecting like powers of  $\lambda$  we obtain a hierarchy of equations:

$$(c^2 - 1)\frac{d\mathbf{Q}_1}{dz} = \mathbf{A}_0(z)\mathbf{Q}_1 + \mathbf{A}_1\mathbf{Q}_0$$

$$(c^2-1)\frac{d\mathbf{Q}_n}{dz} = \mathbf{A}_0(z)\mathbf{Q}_n + \mathbf{A}_1\mathbf{Q}_{n-1} + \mathbf{A}_2\mathbf{Q}_{n-2}, \quad n = 2, 3, \dots$$

Solution by variation of parameters:

$$\mathbf{Q}_1(z) = \frac{\mathbf{Q}_0(z)}{c^2 - 1} \int_0^z \mathbf{Q}_0(y)^{-1} \mathbf{A}_1 \mathbf{Q}_0(y) \, dy$$

$$\mathbf{Q}_{n}(z) = \frac{\mathbf{Q}_{0}(z)}{c^{2} - 1} \int_{0}^{z} \mathbf{Q}_{0}(y)^{-1} \left( \mathbf{A}_{1} \mathbf{Q}_{n-1}(y) + \mathbf{A}_{2} \mathbf{Q}_{n-2} \right) dy, \ n \ge 2$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 50/91

#### IIMAS

#### By Abel's identity:

#### Lemma

For all 
$$z \in \mathbb{R}$$
,  $\lambda \in \mathbb{C}$ , there holds

$$\det \mathbf{Q}(z,\lambda) = \frac{\exp\left(2c\lambda z/(c^2-1)\right)}{c^2-1}.$$

#### After (tedious) computations (Jones et al. (2014)):

Lemma

tr 
$$\mathbf{Q}_0(T)\mathbf{Q}_0(0)^{-1} = 2.$$
  
tr  $\mathbf{Q}_1(T)\mathbf{Q}_0(0)^{-1} = \frac{2cT}{c^2 - 1}.$ 

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 51/91



#### IIMAS

#### By Abel's identity:

### Lemma

For all  $z \in \mathbb{R}$ ,  $\lambda \in \mathbb{C}$ , there holds

$$\det \mathbf{Q}(z,\lambda) = \frac{\exp\left(2c\lambda z/(c^2-1)\right)}{c^2-1}.$$

After (tedious) computations (Jones et al. (2014)):

### Lemma

$$\operatorname{tr} \mathbf{Q}_0(T) \mathbf{Q}_0(0)^{-1} = 2.$$
$$\operatorname{tr} \mathbf{Q}_1(T) \mathbf{Q}_0(0)^{-1} = \frac{2cT}{c^2 - 1}.$$
$$\operatorname{tr} \mathbf{Q}_2(T) \mathbf{Q}_0(0)^{-1} = \frac{c^2 T^2}{(c^2 - 1)^2} - \frac{T_E}{c^2 - 1} \int_0^T f_z(y)^2 \, dy.$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 51/91
## Perturbation of the Jordan block

By analyticity of the monodromy map:

$$\mathbf{M}(\lambda) = \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} \frac{d^n \mathbf{M}}{d\lambda^n}(0).$$

(Standard perturbation theory, Kato.) In general, the Floquet multipliers bifurcate from  $\lambda = 0$  in Pusieux series.

Fundamental matrix:

$$\mathbf{F}(z,\lambda) = \mathbf{Q}(z,\lambda)\mathbf{Q}_0(0)^{-1} = \sum_{n=0}^{+\infty} \lambda^n \mathbf{Q}_n(z)\mathbf{Q}_0^{-1} =: \sum_{n=0}^{+\infty} \lambda^n \mathbf{F}_n(z)$$



## Perturbation of the Jordan block

By analyticity of the monodromy map:

$$\mathbf{M}(\lambda) = \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} \frac{d^n \mathbf{M}}{d\lambda^n}(0).$$

(Standard perturbation theory, Kato.) In general, the Floquet multipliers bifurcate from  $\lambda = 0$  in Pusieux series. Fundamental matrix:

$$\mathbf{F}(z,\lambda) = \mathbf{Q}(z,\lambda)\mathbf{Q}_0(0)^{-1} = \sum_{n=0}^{+\infty} \lambda^n \mathbf{Q}_n(z)\mathbf{Q}_0^{-1} =: \sum_{n=0}^{+\infty} \lambda^n \mathbf{F}_n(z)$$



In view that:

$$\frac{d^n \mathbf{M}}{d\lambda^n}(0) = n! \mathbf{Q}_n(T) \mathbf{Q}_0(0)^{-1},$$

### Lemma

We have convergent series expansions

$$\mathbf{M}(\lambda) = \sum_{n=0}^{+\infty} \lambda^n \mathbf{Q}_n(T) \mathbf{Q}_0(0)^{-1},$$
  

$$\operatorname{tr} \mathbf{M}(\lambda) = \sum_{n=0}^{+\infty} \lambda^n \operatorname{tr} \mathbf{Q}_n(T) \mathbf{Q}_0(0)^{-1},$$
  
and 
$$\det \mathbf{M}(\lambda) = \sum_{n=0}^{+\infty} \left(\frac{2cT}{c^2 - 1}\right)^n \frac{\lambda^n}{n!},$$

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 53/91



# First application: the parity index

 $\lambda = 0$  belongs to the spectrum  $\sigma$ . (In fact,  $\lambda = 0$  belongs to the periodic partial spectrum  $\sigma_0$ , as both Floquet multipliers coincide at  $\mu = 1$ , with the formation of a Jordan block in the monodromy matrix  $\mathbf{M}(0)$  in the generic case  $T_E \neq 0$ ). At a physical level, this is related to the translation invariance of the periodic traveling wave. Recall that the periodic eigenvalues (the points of the periodic partial spectrum  $\sigma_0$ ) are the roots of the (entire) periodic Evans function  $D(\lambda, 0)$  with  $\theta = 0$ . Expanding out the determinant and setting  $\theta = 0$  gives the formula

$$D(\lambda, 0) = 1 - \operatorname{tr} (\mathbf{M}(\lambda)) + \operatorname{det}(\mathbf{M}(\lambda)).$$

To define the parity index we will consider the restriction of this formula to  $\lambda \in \mathbb{R}.$ 

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 54/91

### Lemma

The restriction of the periodic Evans function  $D(\lambda,0)$  to  $\lambda \in \mathbb{R}$  is a real-analytic function. Moreover, for  $\lambda \in \mathbb{R}_+$  with  $\lambda \gg 1$  sufficiently large, we have

$$\operatorname{sgn}\left(D(\lambda,0)\right) = \operatorname{sgn}\left(c^2 - 1\right)$$

**Proof**: The system has real coefficients whenever  $\lambda \in \mathbb{R}$ . Therefore the fundamental solution matrix  $\mathbf{F}(z,\lambda)$  is real for real  $\lambda$  and  $z \in [0,T]$ . By evaluation at z = T the same is true for the elements of the monodromy matrix  $\mathbf{M}(\lambda)$ , and this proves the real-analyticity. When  $\lambda$  is large in magnitude, then  $\lambda^2 + V''(f(z)) \approx \lambda^2$ , and hence the first-order system can be approximated by a constant-coefficient one:

$$\mathbf{w}_z = \mathbf{A}^{\infty}(\lambda)\mathbf{w}, \quad \mathbf{A}^{\infty} := \begin{pmatrix} 0 & 1 \\ -\frac{\lambda^2}{c^2 - 1} & \frac{2c\lambda}{c^2 - 1} \end{pmatrix}$$

The fundamental solution matrix of this approximating system is the matrix exponential  $\mathbf{F}^{\infty}(z,\lambda) = e^{z\mathbf{A}^{\infty}(\lambda)}$ , and the corresponding monodromy matrix is  $\mathbf{M}^{\infty}(\lambda) = e^{T\mathbf{A}^{\infty}(\lambda)}$ . The eigenvalues of  $\mathbf{A}^{\infty}(\lambda)$  are  $\lambda/(c \pm 1)$ , and hence those of  $\mathbf{M}^{\infty}(\lambda)$  are  $e^{\lambda T/(c\pm 1)}$ . The periodic (with  $\theta = 0$ ) Evans function associated with the approximating system is therefore

$$D^{\infty}(\lambda, 0) = 1 - \operatorname{tr} \left( \mathbf{M}^{\infty}(\lambda) \right) + \operatorname{det}(\mathbf{M}^{\infty}(\lambda))$$
$$= (e^{\lambda T/(c+1)} - 1)(e^{\lambda T/(c-1)} - 1).$$



This real-valued function of  $\lambda \in \mathbb{R}$  clearly has the same sign as does  $c^2 - 1$  for large positive  $\lambda$ . The coefficient matrix  $\mathbf{A}^{\infty}(\lambda)$  is an accurate approximation of that of the original system uniformly for  $z \in [0, T]$ , so the respective Evans functions  $D^{\infty}(\lambda, 0)$  and  $D(\lambda, 0)$  are close to each other in the limit  $\lambda \to \infty$ . This shows that  $D(\lambda, 0)$  has the same sign as does  $c^2 - 1$  for  $\lambda \gg 1$ .

**Observation**: This behaviour of the Evans function on the real line seems to be generic, a powerful analytical and numerical tool to detect **real** unstable eigenvalues in many situations (pulses, fronts, periodic waves, etc.)



This real-valued function of  $\lambda \in \mathbb{R}$  clearly has the same sign as does  $c^2 - 1$  for large positive  $\lambda$ . The coefficient matrix  $\mathbf{A}^{\infty}(\lambda)$  is an accurate approximation of that of the original system uniformly for  $z \in [0, T]$ , so the respective Evans functions  $D^{\infty}(\lambda, 0)$  and  $D(\lambda, 0)$  are close to each other in the limit  $\lambda \to \infty$ . This shows that  $D(\lambda, 0)$  has the same sign as does  $c^2 - 1$  for  $\lambda \gg 1$ .

**Observation**: This behaviour of the Evans function on the real line seems to be generic, a powerful analytical and numerical tool to detect **real** unstable eigenvalues in many situations (pulses, fronts, periodic waves, etc.)



Typical behaviour for equations with Hamiltonian structure: the first derivative of the Evans function vanishes at  $\lambda = 0$ .

### Lemma

The periodic Evans function  $D(\cdot,0): \mathbb{R} \to \mathbb{R}$  for the non-linear Klein-Gordon equation waves vanishes to even order at  $\lambda = 0$  and satisfies,

$$D(0,0) = D_{\lambda}(0,0) = 0, \quad D_{\lambda\lambda}(0,0) = 2(q^2 - \kappa),$$

where  $q = cT/(c^2-1)$  and where

$$\kappa = \frac{M_{12}(0)}{(c^2 - 1)^2} \int_0^T F_{11}(y, 0)^2 \, dy.$$

**Proof**: Follows by direct expansion of the Floquet multipliers (in a moment).

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlínear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Silde 58/91



# The parity index

### Definition (parity index $\gamma_P$ )

Suppose  $D(\cdot,0)$  vanishes to (even) order  $2n \ge 2$  at  $\lambda = 0$ . The *parity (or orientation) index* is given by

$$\gamma_{\mathbf{P}} := \operatorname{sgn}\left((c^2 - 1)\partial_{\lambda}^{2n}D(0, 1)\right).$$

This yields the following instability criterion with respect to (real) periodic eigenvalues:



### Theorem

If  $\gamma_{\rm P} = 1$  (resp.,  $\gamma_{\rm P} = -1$ ) then the number of positive real points in the periodic partial spectrum  $\sigma_0 \subset \sigma$ , i.e., periodic eigenvalues, is even (resp., odd) when counted according to multiplicity. In particular, if  $\gamma_{\rm P} = -1$  there is at least one positive real periodic eigenvalue and hence the underlying periodic wave *f* solving the Klein-Gordon equation is spectrally unstable, with the corresponding exponentially growing solution of the linearized equation having the same spatial period *T* as  $f_z$ .



IIMAS

**Proof**: If  $\gamma_P = 1$ , then  $D(\lambda, 0)$  has the same sign for sufficiently small and sufficiently large strictly positive  $\lambda$ , while if  $\gamma_P = -1$  the signs are opposite for small and large  $\lambda$ . Since  $D(\lambda, 0)$  is real-analytic for real  $\lambda$  it clearly has an even number of positive roots for  $\gamma_P = 1$  and an odd number of positive roots for  $\gamma_P = -1$ , with the roots weighted by their multiplicities. These roots correspond to points in the spectrum  $\sigma$ , and since  $\theta = 0$ , they are periodic eigenvalues.

**Observation**: Notice that the case  $\gamma_P = 1$  is **inconclisive** for spectral stability: it only guarantees that the number of real periodic eigenvalues is even (possibly zero). Hence, its name (parity index).



IIMAS

Applying the result to the non-linear Klein-Gordon case we immediately have:

### Theorem

Under the assumptions on the potential V. Then, subluminal librational periodic traveling wave solutions of the Klein-Gordon equation for which  $T_E < 0$  are spectrally unstable, having a positive real periodic eigenvalue  $\lambda \in \sigma_0 \subset \sigma$ .

**Proof**: Follows directly from tha fact that  $c^2 - 1 < 0$ ,  $(c^2 - 1)T_E > 0$  in the subluminal librational case, and thus  $M_{12}(0) = -T_E(c^1 - 1)v_0^2 < 0$  and  $\kappa < 0$ , yielding  $D_{\lambda\lambda}(0,0) > 0$ . Hence,  $D(\cdot,0)$  vanishes precisely at second order and  $\gamma_P = -1$ .



### Corollary

Subluminal librational periodic traveling wave solutions of the sine-Gordon equation ( $V(u) = -\cos(u)$ ) are spectrally unstable, having a positive real **periodic** eigenvalue  $\lambda \in \sigma_0 \subset \sigma$ .



## Expansion of the Floquet multipliers

Recall that, given  $\lambda \in \mathbb{C}$ , the Floquet multipliers  $\mu = \mu(\lambda)$ are defined as the roots of the characteristic equation  $\hat{D}(\lambda,\mu) = 0$ , i.e., they are the eigenvalues of the monodromy matrix  $\mathbf{M}(\lambda)$ . The quadratic formula gives the multipliers in the form

$$\hat{D}(\lambda,\mu) = \det(\mathbf{M}(\lambda) - \mu \mathbf{I}) = \mu^2 - (\operatorname{tr} \mathbf{M}(\lambda))\mu + \det \mathbf{M}(\lambda) = 0$$

$$\mu_{\pm}(\lambda) = \frac{1}{2} \left( \operatorname{tr} \mathbf{M}(\lambda) \pm \left( (\operatorname{tr} \mathbf{M}(\lambda))^2 - 4 \det \mathbf{M}(\lambda) \right)^{1/2} \right)$$



Substituting the powers expansion series for  $\mbox{tr}\,M$  and  $\mbox{det}\,M$  we obtain:

$$\operatorname{tr} \mathbf{M}(\lambda)^{2} - 4 \operatorname{det} \mathbf{M}(\lambda) = \left(\operatorname{tr} \mathbf{Q}_{0}(T) \mathbf{Q}_{0}(0)^{-1} + \lambda \operatorname{tr} \mathbf{Q}_{1}(T) \mathbf{Q}_{0}(0)^{-1} + \lambda^{2} \operatorname{tr} \mathbf{Q}_{2}(T) \mathbf{Q}_{0}(0)^{-1}\right)^{2} + -4 \left(1 + \frac{2cT}{c^{2} - 1} \lambda + \frac{2c^{2}T^{2}}{(c^{2} - 1)^{2}} \lambda^{2}\right) + O(\lambda^{3})$$
$$= 4\Delta\lambda^{2} + O(\lambda^{3}),$$

where,

$$\Delta := -\frac{T_E}{c^2 - 1} \int_0^T f_z(y)^2 \, dy$$



### Expansion of the Floquet multipliers:

The two Floquet multipliers are analytic functions of  $\lambda$  at  $\lambda=0.$  Asymptotic form:

$$\mu_{\pm}(\lambda) = 1 + \left(\frac{cT}{c^2 - 1} \pm \Delta^{1/2}\right)\lambda + O(\lambda^2)$$

# The modulational instability index

### Definition

We define the **modulational instability index** to be the quantity

$$\gamma_M := \operatorname{sgn} \Delta = \operatorname{sgn} \left( -(c^2 - 1)T_E \right),$$

with the understanding that  $\gamma_M = 0$  if  $T_E = 0$ . In particular,  $\gamma_M = 1$  for rotational waves of any speed.

Observe that it is the index that determines the hyperbolicity of the Whitham system (Lecture 2).

# The modulational instability index

### Definition

We define the **modulational instability index** to be the quantity

$$\gamma_M := \operatorname{sgn} \Delta = \operatorname{sgn} \left( -(c^2 - 1)T_E \right),$$

with the understanding that  $\gamma_M = 0$  if  $T_E = 0$ . In particular,  $\gamma_M = 1$  for rotational waves of any speed.

# Observe that it is the index that determines the hyperbolicity of the Whitham system (Lecture 2).



**Observation:** In particular, when  $\lambda \in \mathbb{R},$  the expansions yield

$$\operatorname{tr}(\mathbf{M}(\lambda)) = 2 + 2q\lambda + (q^2 + \kappa)\lambda^2 + O(\lambda^3), \quad \lambda \to 0,$$

$$\det(\mathbf{M}(\lambda)) = 1 + 2q\lambda + 2q^2\lambda^2 + O(\lambda^3), \quad \lambda \to 0,$$

and consequently

$$D(\lambda,0) = (q^2 - \kappa) \lambda^2 + O(\lambda^3) \quad \lambda \to 0,$$

confirming the vanishing at second order (at least) of the asymptotic expansion of D on the real line.



# Expansion of D near the origin

### Lemma

The periodic Evans function  $D(\lambda, \theta)$ , for  $(\lambda, \theta) \in \mathbb{C} \times \mathbb{R}$ , has the following expansion in a neighborhood of  $(\lambda, \theta) = (0, 0)$ ,

$$D(\lambda, \theta) = -\kappa \lambda^2 + (i\theta - q\lambda)^2 + O(3),$$

where O(3) denotes terms of order three or higher in  $(\lambda, \theta)$ , with  $q = ct/(c^2 - 1)$  and

$$\kappa = \frac{M_{12}(0)}{(c^2 - 1)^2} \int_0^T F_{11}(y, 0)^2 \, dy.$$



**Proof**: Follows immediately from the formula (with  $\mu = e^{i\theta}$ ),

$$D(\lambda, \theta) = \hat{D}(\lambda, e^{i\theta}) = e^{2i\theta} - \operatorname{tr}(\mathbf{M}(\lambda))e^{i\theta} + \det(\mathbf{M}(\lambda)),$$

upon expanding the exponentials in power series about  $\theta=0.$ 

**Observation:** We may use this expansion to analyse how solutions to the spectral curve bifurcate from (0,0). When c = 0 the spectrum is well-understood (it's the Hill's spectrum, Scott's trick). Hence, without loss of generality we assume that  $c \neq 0$ , and since q = 0 iff c = 0, that  $q \neq 0$ .



### Lemma

If  $\gamma_M = -1$  then the equation  $D(\lambda, \theta) = 0$  parametrically describes two distinct smooth curves that cross at the origin with tangent lines making acute non-zero angles with the imaginary axis:

$$\lambda^{\pm}(\mathbf{\theta}) = -(\mathbf{\alpha}^{\pm} + i\mathbf{\beta}^{\pm})\mathbf{\theta} + O(\mathbf{\theta}^2),$$

with  $\alpha^{\pm}, \beta^{\pm} \in \mathbb{R}, \alpha^{\pm} \neq 0$ , for  $|\theta| \sim 0$ . If  $\gamma_M = 1$ , but  $\kappa \neq q^2$ , then solutions to  $D(\lambda, \theta) = 0$  emerge from the origin as two curves tangential to the imaginary axis in the  $\lambda$ -plane:

$$\lambda^{\pm}(\theta) = -i\nu^{\pm}\theta + O(\theta^2),$$

with  $\nu^{\pm} \in \mathbb{R}$ ,  $\nu^{\pm} \neq 0$ , for  $|\theta| \sim 0$ .

Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 71/91



**Proof sketch**: Follows from a direct application of the Implicit Function Theorem on the derivative if *D*. For details see **Jones** *et. al* (2014).

**Observation**: The case when  $\kappa = q^2$  is more complicated. It is related to how many derivatives vanish at order 2n (recall  $\gamma_M = 1$ , even). In that case the index is associated to a **strong modulational instability**.





Figure : A qualitative sketch of the three generic possibilities for the spectrum  $\sigma$  in a neighborhood of the origin.  $\gamma_M = 1$  with  $\kappa \neq q^2$ , in the cases  $T_E \neq 0$  (left), and  $T_E = 0$  (degenerate, center). The case  $\gamma_M = -1$  is depicted at the right panel.



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 73/91

#### IIMAS

# Modulational instability

### Definition

A periodic traveling wave solution f of the Klein-Gordon equation is said to be modulationally unstable (or, to have a modulational instability) if for every neighborhood *U* of the origin  $\lambda = 0$ ,  $(\sigma \setminus i\mathbb{R}) \cap U \neq \emptyset$ . Otherwise, *f* is said to be modulationally stable. For an angle  $\theta \in (0, \pi/2)$ , let  $S_{\theta}$  denote the union of the open sectors given by the inequalities  $|\arg(\lambda)| < \theta$  or  $|\arg(-\lambda)| < \theta$ (note  $0 \notin S_{\theta}$ ). A modulational instability is called **weak** if for every  $\theta \in (0, \pi/2)$  and for every neighborhood U of the origin,  $\sigma \cap U \cap S_{\theta} = \emptyset$ . A modulational instability that is not weak is called strong.





Figure : The case  $\kappa = q^2$ : Spectrum near the origin when  $D(\cdot, 0) = 0$  to order 2n with n = 2 (left panel) and n = 3 (center panel). The right panel illustrates the spectrum near the origin for  $\partial_{\lambda}^2 D(0,0)$  and  $\partial_{\lambda}^4 D(0,0)$  both small but nonzero.



### Theorem

Let *V* be a potential satisfying Assumptions (a), (b) and (c). A librational periodic traveling wave solution of the nonlinear Klein-Gordon equation for which  $(c^2 - 1)T_E > 0$ holds (equivalently  $\gamma_M = -1$ ) is **strongly modulationally unstable**.

### Corollary

All librational waves satisfying  $(c^2 - 1)T_E > 0$  are **spectrally unstable**.



### Theorem

Let *V* be a potential satisfying Assumptions (a), (b) and (c). A librational periodic traveling wave solution of the nonlinear Klein-Gordon equation for which  $(c^2 - 1)T_E > 0$ holds (equivalently  $\gamma_M = -1$ ) is **strongly modulationally unstable**.

### Corollary

All librational waves satisfying  $(c^2 - 1)T_E > 0$  are spectrally unstable.



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 76/91

### Corollary

All librational traveling wave solutions of the sine-Gordon equation, with  $V(u) = 1 - \cos(u)$ , are **strongly modulationally unstable** and hence **spectrally unstable**.

We also recover Whitham modulational stability results:

### Corollary

The Whitham's modulation system associated to a periodic nonlinear Klein-Gordon wavetrain is hyperbolic if and only if  $\gamma_M = 1$ .



### Corollary

All librational traveling wave solutions of the sine-Gordon equation, with  $V(u) = 1 - \cos(u)$ , are **strongly modulationally unstable** and hence **spectrally unstable**.

We also recover Whitham modulational stability results:

### Corollary

The Whitham's modulation system associated to a periodic nonlinear Klein-Gordon wavetrain is hyperbolic if and only if  $\gamma_M = 1$ .



#### IIMAS

# Theorem (Rigorous proof of Whitham's instability results)

Under the non-degenerate condition  $T_E \neq 0$ , if the periodic traveling wave is **modulationaly unstable** in the sense defined by Whitham then it is **spectrally unstable**.

**Observation**: Modulational stability is **inconclusive** for spectral stability.



#### IIMAS

# Theorem (Rigorous proof of Whitham's instability results)

Under the non-degenerate condition  $T_E \neq 0$ , if the periodic traveling wave is **modulationaly unstable** in the sense defined by Whitham then it is **spectrally unstable**.

**Observation**: Modulational stability is **inconclusive** for spectral stability.



### Theorem

Under Assumptions (a), (b) and (c) for the potential there hold:

- Both super- and subluminal rotational waves are **modulationally stable**, and
- both super- and subluminal librational waves are modulationally unstable (and, therefore spectrally unstable).





# Figure : Numerical plots of the Floquet spectrum $G(\lambda) = 0$ for sine-Gordon.



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 80/91

# (In)stability in the rotational case

Recall: Scott (1969), introduced the transformation

$$y = w \exp\left(\frac{-c\lambda z}{c^2 - 1}\right),$$

and obtained the related Hill's operator:

$$y_{zz} + \frac{V''(f(z))}{c^2 - 1}y = \left(\frac{\lambda}{c^2 - 1}\right)^2 y =: vy.$$
 (H)

Hill's equation with period *T*.  $v \in \sigma_H$  (Floquet spectrum of (H)) if there is a bounded solution *y*.


#### IIMAS

# Further (non-Evans function related) results

#### Theorem

Under assumptions on V we have:

- (A) Superluminal rotational waves are **spectrally unstable**.
- (B) Subluminal rotational waves are **spectrally stable**. That is: if  $\lambda \in \sigma$  then  $\lambda$  is purely imaginary.



#### Proof sketch: Part (A) Define $G : \mathbb{C} \to \mathbb{R}$ by

$$G(\lambda) = \log |\mu_+(\lambda)| \log |\mu_-(\lambda)|.$$

*G* continuous in  $\mathbb{R}^2$  and  $\lambda \in \sigma$  if and only if  $G(\lambda) = 0$ . Fact: if  $\mu(\lambda) \in \sigma \mathbf{M}(\lambda)$  (Floquet mult. for (P) then  $\eta(\lambda) = \exp(-\lambda cT/(c^2 - 1)) \in \sigma \mathbf{M}_H(\lambda)$  (Floquet mult. for (H)). By Abel's identity:

$$G(\lambda) = \left(\operatorname{Re} \frac{c\lambda T}{c^2 - 1}\right)^2 - (\log|\eta_+(\lambda)|)^2$$
$$= \left(\operatorname{Re} \frac{c\lambda T}{c^2 - 1}\right)^2 - (\log|\eta_-(\lambda)|)^2.$$



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 83/91 Thus, for  $\lambda \in i\mathbb{R}$ ,  $G \leq 0$ . Moreover,  $G(i\beta) = 0$  iff  $i\beta \in \sigma \cap i\mathbb{R} = \sigma^H \cap i\mathbb{R}$ . Thus,

### Corollary

Suppose 
$$\beta \in \mathbb{R}$$
 is such that  $\left(rac{i\beta}{c^2-1}
ight)^2 \notin \sigma^H$ . Then  $G(i\beta) < 0$ .



Moreover, we can show:

#### Lemma

For a superluminal rotational wave,  $G(\lambda) > 0$  for  $\lambda \in \mathbb{R}$ ,  $\lambda \gg 1$ , and there is a  $i\beta_*$  in the spectral gap of  $\sigma_H$ , that is,  $G(i\beta) < 0$ .

By continuity, there must be an eigenvalue  $\lambda = \alpha_* t + i\beta_*(1-t)$  for some  $t \in (0,1)$ , where  $G(\alpha_*) > 0$ ,  $\alpha_*$  large and real, such that  $G(\lambda) = 0$ . Clearly, Re  $\lambda > 0$ .

This shows (A).



Moreover, we can show:

#### Lemma

For a superluminal rotational wave,  $G(\lambda) > 0$  for  $\lambda \in \mathbb{R}$ ,  $\lambda \gg 1$ , and there is a  $i\beta_*$  in the spectral gap of  $\sigma_H$ , that is,  $G(i\beta) < 0$ .

By continuity, there must be an eigenvalue  $\lambda = \alpha_* t + i\beta_*(1-t)$  for some  $t \in (0,1)$ , where  $G(\alpha_*) > 0$ ,  $\alpha_*$  large and real, such that  $G(\lambda) = 0$ . Clearly, Re  $\lambda > 0$ .

This shows (A).



#### Part (B): Spectral stability of subluminal rotations.

By energy estimates: define the Hamiltonian operator  $H = d^2/dz^2 + V''(f)/(c^2 - 1)$  so that the spectral equation (P) is:

$$(c^2 - 1)Hw(z) - 2c\lambda w_z(z) + \lambda^2 w(z) = 0$$

#### Lemma

The operator *H* is negative semidefinite in the case of a rotational wave. For librations, *H* is indefinite.



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 86/91 If  $\lambda \in \sigma$ , multiply eq. by  $w^*$  and integrate by parts on a fundamental period [0, T]:

$$(c^2-1)\langle w, Hw\rangle - 2im\lambda + \|w\|^2\lambda^2 = 0,$$

$$m := -ic \int_0^T w(z)^* w_z(z) \, dz \in \mathbb{R}$$

 $m \in \mathbb{R}$  using the periodicity of w and integrating by parts. The roots of the quadratic are:

$$\lambda = \frac{1}{\|w\|^2} \left[ im \pm \sqrt{-m^2 - (c^2 - 1) \|w\|^2 \langle w, Hw \rangle} \right].$$

 $\lambda \in i\mathbb{R}$  whenever  $c^2 < 1$ .

#### This shows (B).

If  $\lambda \in \sigma$ , multiply eq. by  $w^*$  and integrate by parts on a fundamental period [0, T]:

$$(c^2-1)\langle w, Hw\rangle - 2im\lambda + \|w\|^2\lambda^2 = 0,$$

$$m := -ic \int_0^T w(z)^* w_z(z) \, dz \in \mathbb{R}$$

 $m \in \mathbb{R}$  using the periodicity of w and integrating by parts. The roots of the quadratic are:

$$\lambda = \frac{1}{\|w\|^2} \left[ im \pm \sqrt{-m^2 - (c^2 - 1)\|w\|^2 \langle w, Hw \rangle} \right].$$

 $\lambda \in i\mathbb{R}$  whenever  $c^2 < 1$ .

#### This shows (B).

## Bibliography

- Ascher, Mattheij and Russell, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations, 1988
- Alexander, Gardner, Jones, J. Reine Angew. Math.
   410 (1990)
- Benzoni-Gavage, Noble, Rodrigues, J. Nonlinear Sci. 24 (2014)
- Bronski, Johnson, Arch. Ration. Mech. Anal. 197 (2010)
- Bronski, Johnson, Kapitula, Comm. Math. Phys. 327 (2014)
- Chicone, J. Differential Equations 69 (1987)
- Gardner, J. Math. Pures Appl. (9) 72 (1993)



- Gardner, J. Reine Angew. Math. 491 (1997)
- Hărăguş, Kapitula, Phys. D 237 (2008)
- Johnson, Phys. D 239 (2010)
- Johnson, Zumbrun, Stud. Appl. Math. 125(2010)
- Jones, Marangell, Miller, Plaza, Phys. D 251 (2013)
- Jones, Marangell, Miller, Plaza, J. Diff. Eqs. 257 (2014)
- Kapitula, Promislow, *Spectral and Dynamical Stability* of Nonlinear Waves, Springer (2013)
- Markus, Introduction to the spectral theory of polynomial operator pencils, AMS (1988)
- Noble, Rodrigues, Indiana Univ. Math. J. 62 (2013)
- Oh, Zumbrun, Arch. Ration. Mech. Anal. 166 (2003)
- Oh, Zumbrun, Z. Anal. Anwend. 25 (2006)

- Sandstede, Stability of travelling waves, in B.Fiedler (ed.) Hadbook of Dynamical Systems, Vol. 2 (2002)
- Sandstede, Scheel, Phys. Rev. E 62 (2000)
- Sandstede, Scheel, J. Differential Equations **172** (2001)
- Scott, IEEE Transactions on Circuit Theory 11 (1964)
- Scott, Proc. IEEE 57 (1965)
- Serre, Comm. PDE 30 (2005)
- Whitham, Proc. Roy. Soc. Ser. A 283 (1965)
- Whitham, J. Fluid Mech. 22 (1965)
- Whitham, *Linear and Nonlinear Waves*, John Wiley and Sons (1974)



#### Thanks!



Ramón G. Plaza — Stability of periodic wavetrains — II Workshop on Nonlinear Dispersive Equations. Universidade Estadual de Campinas, Brazil. October 6 to 9, 2015. Slide 91/91